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1 Introduction

Under the market efficiency hypothesis, prices fully reflect public information. However, for the
past 40 years, it has been shown that prices, specially those of small firms, drift following a vast
array of announcements.1 The traditional explanation for this phenomenon is that prices are slow
to incorporate information. But the reason why prices are slow to incorporate information remains
elusive. To a large extent, this elusiveness stems from a common misconception: that interpreting
information is a trivial task everyone can perform in the exact same way. In reality, though, things
are very different. Before investors can use new information to form trading decisions, they need
to figure out its implications for the asset’s fundamental value. Usually, this involves forecasting
a stream of future cash-flows and discount factors, which makes the task far from trivial. But,
above all, it makes it a subjective task. Different people, with different innate abilities, acquired
skills, time available to do research, mood, among many other aspects, will naturally reach different
conclusions based on the same information. This is evident, for example, from the dispersion of
analyst forecasts.

In this paper, I develop a model that incorporates the idea of differential interpretation of
public information, and I show how it can generate a post-announcement drift. I use a finite-
horizon dynamic noisy rational expectations framework with a continuum of long-lived risk averse
investors, similar to He and Wang (1995).2 To obtain a post-announcement drift, I make three
key assumptions: (i) there is differential interpretation of public announcements; (ii) investors
recognize their limited ability to interpret information and so they do not hold dogmatically to their
interpretations; (iii) the random net supply of the risky asset follows a mean-reverting process.

The assumption of differential interpretation of information essentially transforms the raw pub-
lic information into private interpreted information. Assumption (ii) marks the departure of this
model from the difference of opinions literature, where investors are assumed to hold their beliefs
dogmatically (e.g. Harris and Raviv, 1993, Kandel and Pearson, 1995, Banerjee and Kremer 2010).3

Instead, I assume that investors recognize their interpretations (or opinions) are imperfect, and so
they have an incentive to look for others’ opinions in order to improve their own interpretations.
This can be accomplished by observing prices, since prices aggregate the opinions of all market par-
ticipants. However, the information extracted from prices is noisy due to noise/liquidity trading,
as in Grossman and Stiglitz (1980). Therefore, investors can learn something about the market
consensus interpretation from a single observation of the price, but not everything. This is where
assumption (iii) kicks in. As long as noise trading follows a mean-reverting process, the observa-

1These announcements include, but are not limited to, earnings surprises (Ball and Brown, 1968; Foster et al.,
1984 and Bernard and Thomas, 1989, 1990), change in analyst recommendations (Michaely and Womack, 1999),
share repurchases (Ikenberry et al., 1995), seasoned equity offerings (Loughran and Ritter, 1995), venture capital
distributions (Gompers and Lerner, 1998); stock splits (Grinblatt, Masulis, and Titman, 1984), dividend initiations
and omissions (Michaely et al., 1995). Daniel et al. (1998) provide a comprehensive list of references related to
the post-announcement drift. More recently, Sinha (2011) uses news tonality to construct a measure of long-term
qualitative information and show that prices underreact to news releases in general.

2The model is an extension of the model used by He and Wang (1995) to study trading volume.
3For example, Banerjee and Kremer (2010) assume that investors interpret public information differently but that

each investor “believes that the other investor is wrong and so ignores his interpretation”.
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tion of subsequent prices provides additional information about the market consensus. As a result,
investors can gradually correct their interpretation error by observing the series of prices following
the announcement. In turn, as investors become more confident about their interpretation of the
announcement, they put more weight on it relatively to their prior beliefs. Therefore, the infor-
mation contained in the public announcement is gradually incorporated into posterior beliefs and
prices, generating a post-announcement drift. The public information becomes fully incorporated
into prices only after all market participants completely eliminate their interpretation errors.

The model delivers two new testable implications. The first is that the drift should last longer
for stocks with less analyst coverage. The idea is that analysts help investors interpret information,
thus speeding up the incorporation of information in prices. Hong et al. (2000) test this hypothesis
but in the context of momentum, finding that analyst coverage and momentum are negatively
associated.

The second is that the larger the interpretation uncertainty, the larger and longer the drift, and
the smaller the price reaction to the announcement. This prediction can be tested in two different
ways. The direct approach is to use a proxy for interpretation uncertainty and test whether inter-
pretation uncertainty is negatively associated to the immediate price reaction to the announcement
and positively associated to the magnitude and duration of the subsequent drift. The indirect ap-
proach is to test whether for stocks with similarly surprising news (e.g. SUE) the immediate price
response to the announcement is inversely related to the magnitude and duration of the subsequent
drift. There is already some evidence supporting this prediction, following the direct approach.
Garfinkel and Sokobin (2006) find that the post-earnings announcement drift is larger when the
unexpected volume at the announcement date, which proxies for differences of opinion, is larger.
Zhang (2006) finds similar results for the post-analyst forecast revision drift using several proxies
for information uncertainty. And Hirshleifer et al. (2009) find that the drift is larger in days with
several announcements, likely because investors do not have enough time to carefully interpret the
announcements.

In addition, the model is able to explain the main empirical facts related to the post-announcement
drift. First, according to the model, every announcement whose interpretation is non-trivial will gen-
erate a drift, which explains why prices have been found to drift after such a vast and disparate array
of announcements (see Daniel et al., 1998 for a comprehensive list with references).4 Second, those
drifts are long lasting because noise trading slows down the process of learning the market consensus
from prices. Third, the drift is concentrated in the days following the announcement (Bernard and
Thomas, 1989) because that is when investors are more uncertainty about their interpretations, and
thus more willing to revise them. Fourth, when investors are positively(negatively) surprised by an
announcement they tend to be positively(negatively) surprised by subsequent announcements, not
because they do not understand the relation between those announcements (Bernard and Thomas,
1989), but because they do not have a full understanding of the first announcement. Thus, the drift

4In practice, the availability of data and the frequency of the announcement (i.e. number of observations) puts
a limit on the type of announcements for which we can empirically detect a drift. This is likely the reason why the
post-earnings announcement drift is more robust than drifts following other types of announcements (Fama 1998).
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is also concentrated around subsequent announcement dates. Fifth, because arguably institutional
investor make smaller interpretation errors and are less risk averse, they trade more aggressively
to exploit the drift. As a result, the drift is attenuated although not completely eliminated when
institutional investors trade more actively, which is associated to larger and more liquid stocks, and
to positive news (Bartov et al., 2000 and Cohen et al., 2002).

Chan (2003) finds that momentum is an exclusive of stocks with news and Chordia and Shiv-
akumar (2006) show that momentum is captured by the systematic component of post-earnings
announcement drift. These findings suggest that post-announcement drift and momentum are two
faces of the same coin. Given that the model successfully generates a post-announcement drift, it
seems reasonable to assume that it generates momentum as well. But things are not so straight-
forward. Whereas interpretation errors cause beliefs conditional on the announcement to be biased
toward the prior, the assumption that investors can flawlessly extract information from prices (a
fundamental assumption in the REE framework) causes beliefs conditional on prices to be unbiased.
Since the drift results from the gradual correction of beliefs biased toward the prior, we obtain a drift
when conditioning on the announcement (post-announcement drift), but not when conditioning on
the announcement date price reaction (momentum). Hence, for the model to generate momentum
in addition to a post-announcement drift, it is necessary to allow for mistakes in the extraction of in-
formation from prices as well. With this modification, momentum and the post-announcement drift
share the same root cause, differential interpretation of information, and have similar characteris-
tics. Furthermore, the model can now rationalize why momentum and post-earnings announcement
strategies are largely independent, as documented by Chan et al. (1996) and Brandt et al. (2008).

Several papers have analyzed models that can deliver some sort of momentum. Allen et al.
(2006) show that, in a dynamic REE framework with overlapping generations of investors with
heterogeneous beliefs, the law of iterated expectations does not always hold for average expectations.
As a consequence, prices react sluggishly to changes in fundamental values and average expectations
are closer to the fundamental value than prices. However, their model is bound to generate a
drift since additional exogenous information about the fundamental value becomes available every
period: each generation observes new private information in addition to the history of prices from
which information about the private information of previous generations can be extracted. Cespa
and Vives (2010) use a 2-period model similar to the one developed in this paper to study the
circumstances where prices or average expectations are closer to fundamentals, but they fail to
address how prices change over time in response to the arrival of private information. Furthermore,
they always assume that additional private information from an exogenous source is available every
period. Banerjee et al. (2009) show that higher-order difference of opinions generates momentum in a
dynamic setting. Biais et al. (2010) consider an infinite horizon overlapping generations REE where
a fraction of the investors receive a private signal every period. Momentum arises in their model
but only because the cash-flow process exhibits positive serial correlation. Barberis et al. (1998)
and Daniel et al. (1998) rely on different behavioral biases to generate short run momentum and
long run reversal. Hong and Stein (1999) use boundedly rational investors to attain the same goal.

3



In their paper, momentum is generated by the gradual flow of information which is an exogenous
assumption instead of an endogenous result as in the model of this paper. All these papers have
in common the fact that they do not consider public announcements as a source of heterogeneous
beliefs, and so cannot account for post-announcement drift.5 In addition, many assume that new
exogenous information is available every period. In contrast, in this paper I show that the release
of exogenous information at a single date (the announcement date) is enough to generate a drift.
All additional information is generated endogenously.

The remainder of the paper is organized as follows. I describe the model in Section 2 and solve
for the equilibrium in Section 3. Section 4 is dedicated to the analysis of the post-announcement
drift generated by the model. In Section 5 I discuss the results, confront them with the extant
empirical evidence, and discuss the link between post-announcement drift and momentum. Section
6 concludes. All proofs are provided in the Appendix.

2 The Model

Consider an economy with one risky asset and one riskless asset traded at dates 1, 2, ..., T − 1. The
riskless asset has a perfectly elastic supply and a zero net rate of return. The risky asset is liquidated
at date T , paying v ∼ N

(
0, σ2

v

)
. The date t risky asset’s per capita net supply (θt) is random, due

to noise/liquidity driven demand, and follows the AR (1) process

θt = ρθt−1 + εθ,t, εθ,t ∼ N
(
0, σ2

θ

)
, t = 1, 2, ..., T − 1 (1)

with 0 ≤ ρ ≤ 1 and θ0 = 0.6

There is a continuum of risk averse investors of measure 1, indexed by i. All investors have CARA
preferences over their terminal wealth (W i

T ) with the same coefficient of risk aversion (α). Without
loss of generality, the initial wealth level is normalized to 1. At every date t investor i chooses
the risky asset demand (Xi

t) that maximizes his expected utility conditional on the information
currently available to him (F it ) solving

max
Xi
t

E
(
−e−αW i

T

∣∣∣F it) s.t. W i
t+1 = W i

t +Xi
t (Pt+1 − Pt) , (2)

where Pt is date t risky asset’s price. Investors have homogeneous prior beliefs, v ∼ N
(
0, σ2

v

)
and

θ0 = 0, denoted by F0.
Investors observe public announcements, each based on a non-observable underlying signal for

the liquidation value v. There are n of these underlying signals, defined by

s = v1(n×1) + εs, εs ∼ N
(
0(n×1),Σs

)
, (3)

5The only one of these papers that can generate a post-announcement drift is Daniel et al. (1998). In their paper,
post-announcement drift is a consequence of continuing overreaction to previous private information and requires that
investors exhibit both overconfidence and biased self-attribution.

6The net supply corresponds to the asset’s supply net of the noise/liquidity driven demand.
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where 1(n×1) and 0(n×1) denote (n× 1)-dimensional vectors of ones and zeros, respectively.7 In-
vestors need to interpret public announcements in order to figure out its implications for the liq-
uidation value v and update their beliefs accordingly. The correct interpretation of a public an-
nouncement is its underlying signal. However, because investors have limited ability to interpret
announcements, they make interpretation errors. A key assumption of the paper is that each in-
vestor makes a different interpretation

s̃it = s+ εit, εit ∼ N
(
0(n×1),Σs̃,t

)
, (4)

where εit corresponds to the idiosyncratic interpretation error. In essence, the raw public information
provided by the announcement is transformed into private interpreted information. Interpretation
errors εit are assumed to be independent across i and t and with independent components (i.e. Σs̃,t

is a diagonal matrix). The covariance matrix Σs̃,t determines not only the accuracy of investor’s
interpretations, but also the timing and underlying signal of public announcements: the j-th diago-
nal entry of Σs̃,t is equal to ∞ at every date except when a public announcement based on the j-th
underlying signal is made.

The total information available to investor i and the common information available to all in-
vestors are defined as F it =

{
F0, s̃

i
τ , Pτ : τ = 1, ..., t

}
and Fct = {F0, Pτ : τ = 1, ..., t}, respectively.

Unless it is explicitly stated otherwise, all random variables are independent of each other and
across time.

Even though each investor forms his own interpretation, this model differs from difference of
opinions models like Banerjee and Kremer (2010) in that investors are not dogmatic about their
interpretation of public signals. Instead, investors recognize their limited ability to interpret public
signals and would like to get rid of their interpretation error. Since interpretation errors are unbiased
and independent across investors, and there is an infinite number of investors, the law of large
numbers implies that the average interpretation of all market participants is the correct one, s.
From now on, I will refer to this average interpretation as the market consensus.

Investors can find information about the market consensus in equilibrium prices, which aggre-
gate the information of all market participants. However, the existence of noise trading makes
equilibrium prices only a noisy signal for the market consensus. But, as we will see, as long as
future changes in net supply, and thus in prices, can be forecasted (i.e. ρ < 1), investors can always
learn something more about the market consensus from the observation of each additional price,
even though no additional exogenous information is released. Ultimately, it is the combination of
differential interpretation of the public signals and the predictability of the changes in net supply
that generates a post-announcement drift in this model.

7To distinguish vector-valued variables and parameters from scalar ones, I use bold-faced letters and numbers
throughout the paper to denote the former.
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3 Equilibrium

As usual in CARA-normal frameworks, there is an equilibrium where the price of the risky asset
is a linear function of the state variables

{
v, θτ , s, s̃

i
τ : τ = 1, ..., t, 0 ≤ i ≤ 1

}
. I will only consider

equilibria of this form.
The equilibrium price will depend on the whole history of signals and net supply realizations.

However, as in He and Wang (1995), the history dependence of the date t equilibrium can be sum-
marized by the posterior beliefs about the vector of signals conditional on the common information,
E (s|Fct ). This means that we can work with a low-dimensional state space and avoid the curse of
dimensionality.

Theorem 1. The price function in a linear equilibrium is given by

Pt = p̂tE (s|Fct ) + pts+ pθ,tθt = p̂tE (s|Fct ) + ξt (5)

where
ξt ≡ pts+ pθ,tθt. (6)

Notice that ξt is observationally equivalent to Pt, since E (s|Fct ) is known conditional on either
Fct or F it .

In the remainder of this section I will prove Theorem 1 in three steps. First, I take the equilibrium
price function as given and derive investors’ conditional (on F it and on Fct ) beliefs about the risky
asset’s terminal value and the n signals. Then, I use the equilibrium price function and investors’
conditional beliefs and obtain the demand function by solving the utility maximization problem (2).
Finally, given the demand function, I find the coefficients of the price function (5) that clear the
market. All proofs are presented in Appendix A.

3.1 Posterior Beliefs

The assumption of a linear price function implies that the signal extracted from prices is linear in
the state variables. Since all state variables are jointly normally distributed, posterior beliefs can
be obtained using linear Gaussian filtering. The following lemma, drawing on the linear Gaussian
filtering results in Liptser and Shiryaev (2001), gives the date t conditional expectations.

Lemma 2. Given the linear price function, conditional expectations are defined by

E



v

s

θt


∣∣∣∣∣∣∣∣F

i
t

 = E




v

s

ρθt−1


∣∣∣∣∣∣∣∣F

i
t−1

+Kt

{[
ξt

s̃it

]
− E

([
ξt

s

]∣∣∣∣∣F it−1

)}
(7)

and

E



v

s

θt


∣∣∣∣∣∣∣∣F

c
t

 = E




v

s

ρθt−1


∣∣∣∣∣∣∣∣F

c
t−1

+Kc
t

[
ξt − E

(
ξt| Fct−1

)]
(8)
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with matrices Kt and Kc
t as defined in Appendix A.1.

Date t conditional expectations are a linear function of the previous period conditional expec-
tations, the contemporaneous price (more precisely ξt, which is observationally equivalent to Pt),
and the idiosyncratic interpretation of the contemporaneous public announcements (s̃it). Thus,
for a given vector of underlying signals s and random net supply θt, conditional expectations are
normally distributed across investors, due to the interpretation error. That is, investors who inter-
pret one public announcement optimistically end up with optimistic expectations about that same
announcement, despite their best efforts to correct their interpretation error.

3.2 Optimal Portfolio Allocation

Investors determine their optimal risky asset demand by solving the optimization problem (2).
From (2) it is immediate that the optimal demand depends only on the beliefs about future excess
returns per unit of risky asset. These beliefs can be pinned down from the price function and from
the beliefs about the unobservable state variables of the economy, on which the equilibrium price
depends. Let ∆Pt+1 ≡ Pt+1−Pt denote the excess return per unit of risky asset from date t to date
t+ 1. The next lemma gives the distribution of ∆Pt+1 conditional on F it .

Lemma 3. For every date t = 1, 2, ..., T − 1,

∆Pt+1 = Ct+1ψt +Dt+1ε∆,t+1 (9)

ψt+1 = Ft+1ψt +Gt+1ε∆,t+1 (10)

where

ψt ≡


1

E
(
s| F it

)
E (s| Fct )
E
(
θt| F it

)

 , ε∆,t+1 ≡


v − E

(
v| F it

)
s− E

(
s| F it

)
εit+1
εθ,t+1

 ,

ε∆,t+1
∣∣F it ∼ N

(
0,Σ∆,t+1

)
, and Ct+1, Dt+1, Ft+1, Gt+1 and Σ∆,t+1 are constant matrices of ap-

propriate order defined, respectively, by equations (25), (26), (20), (21) and (31) in Appendix A.2.

The optimization problem (2) is solved through dynamic programming. Let J
(
W i
t ,ψt; t

)
denote

the value function, which represents the optimized expected utility of current wealth given the future
trading opportunities. The Bellman equation associated to problem (2) is

J
(
W i
t ,ψt; t

)
= max

Xi
t

E
[
J
(
W i
t +Xi

t∆Pt+1,ψt+1; t+ 1
)∣∣∣F it] (11)

s.t. J
(
W i
T ,ψT ;T

)
= −e−αW i

T .

The normality of the conditional distribution of excess returns coupled to CARA preferences
allows us to find the value and policy functions in closed form. The next lemma gives the policy
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function at date t, i.e. the optimal demand function, which is a linear function of the Gaussian
vector ψt.

Lemma 4. Let ∆Pt+1 follow the process defined in Lemma 3. Then the optimal demand function
is

Xi
t = 1

α
Qtψt, t = 1, 2, ..., T − 1 (12)

with matrix Qt a function of
{
pτ1 , p̂τ2 , pθ,τ1 : τ1 = 1, ..., T − 1, τ2 = t, ..., T − 1

}
as defined by equa-

tion (34) in Appendix A.3.

The demand of investor i is then a linear function of the expectations of s and θt conditional on
his information set, and of the expectation of s conditional on the common information. Therefore,
conditional on s and θt, the demand is normally distributed across investors because of interpretation
errors and their effect on conditional expectations. More optimistic investors demand a larger
quantity of the risky asset.

3.3 Market Clearing

In the final step, I use the market clearing condition
ˆ
i
Xi
t = θt, t = 1, 2, ..., T − 1

and the demand function previously determined to pin down the equilibrium price function param-
eters {pt, p̂t, pθ,t}t=1,...,T−1. The next lemma gives the system of nonlinear equations associated to
the T−1 market clearing conditions whose solution determines the (T − 1)×(2n+ 1) price function
coefficients.

Lemma 5. (i) At dates t = 1, 2, ..., T − 1, the market for the risky asset clears if and only if

Qt =
[

0 α
pθ,t
pt

(
In − Γ̂−1

t

)
− α
pθ,t
pt

(
In − Γ̂−1

t

)
α
]

(13)

with matrix Γ̂t defined by equation (42) in Appendix A.4.
(ii) Moreover,

pt + p̂t = K̂, 1 ≤ t ≤ T − 1, (14)

with K̂ a vector independent of the price function coefficients as defined in Appendix A.2.

Corollary 6. Since Qt is a function of
{
pτ1 , p̂τ2 , pθ,τ1 : τ1 = 1, ..., T − 1, τ2 = t, ..., T − 1

}
and p̂t

can be obtained from pt, the T −1 market clear conditions defined above form a system of (T − 1)×
(n+ 1) nonlinear equations from which the (T − 1)×(n+ 1) price function coefficients {pτ , pθ,τ}τ=1,...,T−1
can be determined.

Details about the numerical algorithm used to solve the system of nonlinear equations are
provided in Appendix B.
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To the extent that this system of equations has a solution, Lemma 5 proves that the price
function has the linear form hypothesized in Theorem 1. As He and Wang (1995) note, there exists
a unique solution in the absence of residual uncertainty (Σs is a matrix of zeros, implying that
s = v1(n×1)), that is, when the market as whole has enough information to know the liquidation
value with certainty. However, a proof of existence for the general case is difficult to construct.
Using numerical methods I am able to solve for an equilibrium numerically for a wide range of
parameters, which suggests that, in general, existence is not a problem. However, it is increasingly
difficult to obtain a solution as the number of trading dates increase and/or ρ decreases. The large
number of trading dates makes search methods hopelessly ineffective. And the iteration method
outlined in Appendix B becomes increasingly unstable for small values of ρ.8 Also, with residual
uncertainty, the results of Grundy and Mcnichols (1989) suggest that there may exist up to three
distinct equilibria, depending on the parameter values. Numerical results indicate that this is the
case in this model as well.

4 Post-Announcement Drift

In this section I show how, on average, a post-announcement drift in price and in conditional
expectations of the liquidation value arises as a consequence of the differential interpretation of
information and the predictability of changes in net supply. I start with the case of a single
announcement and no residual uncertainty, for which there is a closed form solution for the price
function coefficients. Then, I introduce residual uncertainty and characterize the multiple equilibria
that arise in this setting. I show that residual uncertainty has no impact on the qualitative results
when we consider the equilibrium with the most desirable characteristics. Finally, I analyze the
case of multiple public announcements.

The focus will be on what happens when averaging over the net supply realizations. Therefore,
because prices are a linear function of the net supply, in what follows I fix the net supply to its
average value of zero at all dates.

4.1 No Residual Uncertainty: A Closed Form Solution

When there is no residual uncertainty, every underlying signal is exactly equal to the liquidation
value. Therefore, without loss of generality we can assume that there is a single underlying signal
s = v. To avoid unnecessary complexity, I consider a 3-period model, which is the most parsimonious
model that can deliver a drift. Additional periods do not change the qualitative results but make
the algebraic expressions intractable. The solution is presented in Appendix C.

The case of interest is when investors receive exogenous information, i.e. observe a public
announcement, only at date 1. This means that any additional information at date 2 has to be
endogenously produced from the observation of prices. The next theorem establishes the necessary

8When the iteration method fails to find a solution, a perturbation of the starting point is usually helpful. This
suggests that when the iteration method fails to find a solution it is likely because of a bad starting point and not
because there is no solution.

9



and sufficient conditions for expectations (E
(
v|F it

)
) and prices (Pt) to react to the announcement

and drift in this setting.

Theorem 7. Let T = 3, n = 1, Σs = 0, Σs̃,1 = σ2
s̃,1 and Σs̃,2 =∞.

(i) The average (over supply shocks and investors) announcement date reaction in the expectation
of the liquidation value conditional on the surprise in the liquidation value (s) is

Eθ,i
[
E
(
v| F i1

)
− E (v| F0)

]
=
[
1− V ar

(
v| F i1

)
σ2
v

]
s

and the drift is

Eθ,i
[
E
(
v| F i2

)
− E

(
v| F i1

)]
= V ar

(
v| F i1

)
− V ar

(
v| F i2

)
σ2
v

s.

(ii) The average (over supply shocks and investors) announcement date price reaction conditional
on the surprise in the liquidation value (s) is

Eθ (∆P1) =
[
1− (1− p1) V ar (v| Fc1)

σ2
v

]
s

and the drift is

Eθ (∆P2) =
V ar

(
v| F i2

) (
1− ρ+ α2σ2

θσ
2
s̃,1

)
σ2
v + α2σ2

θσ
2
s̃,1

(
σ2
v + σ2

s̃,1 + α2σ2
θσ

2
s̃,1σ

2
v

) (1− ρ) s.

(iii) There is a reaction in the expectation of the liquidation value and price at the announcement
date if and only if the announcement is informative (σ2

s̃,1 < ∞) and a surprise (s 6= 0), and the
liquidation value is not known with certainty before the announcement (σ2

v > 0).
(iv) There is a drift in the expectation of the liquidation value and price if and only if

{
σ2
v , σ

2
s̃,1, α

2σ2
θ

}
∈

(0,∞)3 ∧ 0 ≤ ρ < 1 ∧ s 6= 0, i.e.: there is a reaction to the announcement (σ2
s̃,1 < ∞, s 6= 0 and

σ2
v > 0); the liquidation value is not learned at the announcement date ( σ2

s̃,1 > 0 and α2σ2
θ > 0);9

endogenous information about the liquidation value is produced at date 2 (ρ < 1 and α2σ2
θ < ∞);

and prior beliefs are informative (σ2
v <∞).

(v) The reaction to the announcement and drift in the expectation of the liquidation value and
price, if they exist, have the same sign of the surprise in the liquidation value (s).

Part (iv) of the theorem establishes that two of the main assumptions of the model, differential
interpretation of public information (σ2

s̃,1 > 0) and predictability of net supply changes (ρ < 1), are
necessary conditions for the existence of a drift. Differential interpretation transforms the public raw
information into private interpreted information (exogenous information). In turn, the predictability
of net supply changes allows the aggregation of that private information, the market consensus
interpretation, to gradually leak through subsequent prices (endogenous information). Obviously,

9In the general model with residual uncertainty, the equivalent condition is that neither the liquidation value nor
the signal underlying the announcement are learned at the announcement date.
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the information leaked through prices only matters because investors do not hold dogmatically to
their interpretations, the third main assumption of the model.

Before we look at the other necessary conditions to obtain a drift and, ultimately, explain how
the drift arises, it is worthwhile to understand how endogenous information is produced. Looking at
the price equation (5), it is clear that predictability in net supply changes implies predictability in
prices. For example, if the current net supply is negative, the net supply is expected to increase in
subsequent periods, which puts a downward pressure on future prices. Moreover, the farther away
the current net supply is perceived to be from its unconditional mean, the larger the adjustment
in net supply and price that is expected to occur in the future. Therefore, investors can forecast
future prices based on their beliefs about the current level of net supply.

In subsequent periods, each investor compares his forecast with the realized price. Any forecast
error can only be explained by (i) a contemporaneous supply shock, (ii) a wrong expectation about
the previous period net supply, or (iii) a mix of both. For example, the observed price will exceed
its forecast if the contemporaneous supply shock is negative, which has a positive impact on the
current price; or if the previous period net supply was in fact larger than previously believed.10 If
investors believe (ii) or (iii) to be the case, the upward revision of the belief about the previous period
net supply leads to a reassessment of the information contained in the previous period price and,
consequently, to an upward revision of the belief on the signal underlying the public announcement
(given ξt , θt and s are positively related since pθ,t is negative). But since investors do not observe
the net supply, they do not know for sure to what extent the discrepancy between the observed price
and its forecast can be attributed to (i) or (ii). Instead, they have to use the information available
to form a belief about what happened. Invariably, investors consider that the most likely scenario
is that the discrepancy between observed and forecasted price is explained by a conjugation of the
two factors, for this is the scenario that implies the smallest departure from their prior beliefs about
the previous period net supply and contemporaneous supply shock.11 Hence, in every period after
the public announcement, some information is endogenously produced and beliefs are revised.12

The larger the ρ, the smaller the expected adjustment in the net supply and consequently the
less predictable the price change is. Therefore, the less likely it is that discrepancies between the
observed and forecasted price are due to (ii); and the less investors adjust their initial expectations
about the previous period net supply and underlying signal. In the limit, when ρ = 1, net supply
changes are unpredictable, and so are price changes. Consequently, eventual differences between

10The latter means that the net supply, if positive, decreased more than expected, implying that prices increased
more than expected; and that the net supply, if negative, increased less than expected, implying that prices decreased
less than expected. In both cases, the observed price beats its forecast.

11Consider that the positive forecast error at t = 2 is due exclusively to a wrong expectation about θ1, that is, the
realized scenario is (θ1, εθ,2) =

(
E
(
θ1| F i1

)
+ e, 0

)
where e > 0 is the error in beliefs about θ1. This scenario implies a

deviation of θ1, but not of εθ,2, from its prior mean. Both variables have a normal prior distribution and, as we know,
the only point at which the first derivative of the probability density function of a normal distribution is zero is at
its mean. Therefore, the alternative scenario

(
E
(
θ1| F i1

)
+ e− ε1,−ε2

)
, ε1 ' 0, ε2 ' 0 is marginally more likely than

the realized scenario. That is, it is always more likely that the forecast error is due to the deviation of both variables
from their prior means than only one.

12Note that when the observed price matches its forecast, endogenous information is still produced. Although there
is no revision of the expectation about the underlying signal, the precision of that expectation increases.
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observed and forecasted prices are attributed only to contemporaneous supply shocks, and there is
no adjustment to the belief about the underlying signal, i.e. there is no endogenous production of
information.

Most of the remaining conditions identified in the theorem as necessary to obtain a drift are
straightforward to understand. We need some prior uncertainty about the liquidation value (σ2

v > 0),
and an informative announcement (σ2

s̃,1 < ∞), otherwise there is nothing to be learned from the
announcement and there is not even a price reaction to the announcement. This stresses the role
of learning about the market consensus for the existence of a drift, and clearly shows that mean-
reversion of net supply per se does not generate a drift. The role of mean-reversion of net supply
is merely the endogenous production of information. A drift would still arise if, in the periods
following the initial announcement, additional information became available from an exogenous
source, instead of an endogenous one (see Theorem 8 below).

In addition, to obtain a drift we need the equilibrium price at the announcement date to be
a noisy, but informative, signal for the private information (0 < α2σ2

θ < ∞), so that the market
consensus is learned gradually.13 But gradually learning about the market consensus, though neces-
sary, is not a sufficient condition to generate a drift in expectations (E

(
v| F it

)
) and prices (Pt). On

average (across investors and net supply), expectations formed at the announcement date have to
be systematically biased toward prior beliefs, which requires prior beliefs to be informative.14 Only
then does the gradual learning of the market consensus generate a drift in a predictable direction,
as that bias is gradually corrected.

So, the question is, “Why are expectations about the underlying signal systematically biased
toward the prior?” The answer is quite simply because investors only observe noisy versions of the
announcement’s underlying signal (s): their interpretation of the announcement (s̃it = s+ εit); and
the information they extract from equilibrium prices (ξt = s + pθ,t

pt
θt).15 Because of this, investors

with informative prior beliefs (σ2
v < ∞) will always put some weight into their prior beliefs when

forming posterior beliefs, as we can see from expression (49) derived in Appendix C and reproduced
here with β → 1 (i.e. only endogenous information at date 2):

E
(
v| F i1

)
=

1
σ2
v
0 + 1

α2σ4
s̃,1σ

2
θ
ξ1 + 1

σ2
s̃,1
s̃i1

1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

+ 1
σ2
s̃,1

, E
(
v| F i2

)
=

1
σ2
v
0 + 1

α2σ4
s̃,1σ

2
θ
ξ1 + 1

σ2
s̃,1
s̃i1 + (1−ρ)2

α2σ4
s̃,1σ

2
θ
ξ2

1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

+ 1
σ2
s̃,1

+ (1−ρ)2

α2σ4
s̃,1σ

2
θ

.

13If information at date 2 is from an exogenous source, it is not necessary to extract information from prices, and
so we can have α2σ2

θ →∞.
14The term biased is used loosely here. It does not mean that investors form biased beliefs given the information

available at the time. Instead, it means that beliefs are biased when compared to the beliefs that would prevail if
investors were able to correctly interpret the announcement, that is, if the underlying signal were observed directly.

15Here I’m using the alternative definition of ξt used in Appendix C.
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Averaging over investors and net supply, posterior expectations become

Eθ,i
[
E
(
v| F i1

)]
=

1
α2σ4

s̃,1σ
2
θ

+ 1
σ2
s̃,1

1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

+ 1
σ2
s̃,1

s, Eθ,i
[
E
(
v| F i2

)]
=

1
α2σ4

s̃,1σ
2
θ

+ 1
σ2
s̃,1

+ (1−ρ)2

α2σ4
s̃,1σ

2
θ

1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

+ 1
σ2
s̃,1

+ (1−ρ)2

α2σ4
s̃,1σ

2
θ

s.

These expressions clearly show that there is a systematic bias towards the prior belief E (v| F0) = 0
as long as σ2

v < ∞. Moreover, this bias shrinks as investors learn about the market consensus in
date 2 (ρ < 1); this is why expectations drift. If there were no bias to correct (σ2

v = ∞), learning
about the market consensus alone would not generate a drift. Naturally, if expectations drift, prices
have to follow suit and drift in the same direction as expectations, otherwise the market would not
clear.

A similar drift can be obtained when the source of additional information is exclusively exoge-
nous, or a mixture of endogenous and exogenous source. In fact, the precision of exogenous signals
can be chosen so that the average price drift is the same as in the case of endogenous information.
This clearly illustrates that the drift results from the arrival of new information leading to a gradual
learning of the market consensus and correction of the bias toward prior beliefs, and not from the
dynamics of the net supply. The following theorem is the equivalent of Theorem 7 for the case
where additional information at date 2 is exclusively exogenous (ρ = 1).

Theorem 8. Let T = 3, n = 1, Σs = 0, Σs̃,1 = σ2
s̃,1, Σs̃,2 = β

1−βσ
2
s̃,1, 0 ≤ β ≤ 1 and ρ = 1.

(i) The average (over supply shocks and investors) announcement date reaction in the expectation
of the liquidation value and price conditional on the surprise in the liquidation value (s) is

Eθ,i
[
E
(
v| F i1

)
− E (v| F0)

]
= Eθ (∆P1) =

(
1− V ar

(
v| F i1

)
σ2
v

)
s

and the drift is

Eθ,i
[
E
(
v| F i2

)
− E

(
v| F i1

)]
= Eθ (∆P2) = V ar

(
v| F i1

)
− V ar

(
v| F i2

)
σ2
v

s.

(ii) There is a reaction in the expectation of the liquidation value and price at the announcement
date if and only if the announcement is informative (σ2

s̃,1 < ∞) and a surprise (s 6= 0), and the
liquidation value is not known with certainty before the announcement (σ2

v > 0).
(iii) There is a drift in the expectation of the liquidation value and price if and only if

{
σ2
v , σ

2
s̃,1

}
∈

(0,∞)2 ∧ α2σ2
θ > 0 ∧ 0 ≤ β < 1 ∧ v 6= 0, i.e.: there is a reaction to the announcement (σ2

s̃,1 < ∞,
s 6= 0 and σ2

v > 0); the liquidation value is not learned at the announcement date (σ2
s̃,1 > 0 and

α2σ2
θ > 0); new information about the liquidation value is available at date 2 (β < 1 ); prior beliefs

are informative (σ2
v <∞).

(iv) The reaction to the announcement and drift in the expectation of the liquidation value and
price, if they exist, have the same sign of the surprise in the liquidation value (s).
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4.2 Calibration and Comparative Statics

As we just saw, the gradual learning of the market consensus interpretation of a public announce-
ment generates a price drift. The question now is whether it can generate a quantitatively meaningful
drift. I shed some light into this question by calibrating the model. The first thing to choose is
the time interval between periods, which determines the frequency with which investors look for
new information, revise beliefs and trade. This is actually a tricky choice. Fixing the net supply
volatility over a given time frame, the shorter the time interval between net supply shocks, the less
volatile these shocks have to be, resulting in more informative prices. In the limit, a day trader
would be able to learn the market consensus immediately. Clearly, this is a limitation of the net
supply process; a more realistic arrival process would obviate this problem. As a compromise, I set
a weekly time interval. I consider 100 weeks (roughly 2 years) of trading until the asset is liquidated,
which is more than enough for the drift to die out before liquidation.

The assumption of CARA preferences means that relative price changes, needed to calibrate the
parameters associated to noise trading, depend on the price level. To deal with this free parameter,
I follow Campbell, Grossman, and Wang (1993) and set the average liquidation value (E (v)) to 1
and the average net supply (E (θt)) to 0, so that prices are relatively close to 1. In addition, I set
the coefficient of absolute risk aversion (α) to 2 which, for wealth levels close to 1, is close to the
coefficient of relative risk aversion.

To calibrate the parameters associated to noise trading, ρ and σ2
θ , I match the return dynamics

of the model to those of the S&P 500.16 The autocorrelation in returns is almost exclusively driven
by ρ, and setting ρ = 0.5 the model generates a first-order autocorrelation in weekly returns of
-0.048, which closely matches that of the S&P 500 over the last 40 years (-0.043). The major driver
of the unconditional volatility of returns is σ2

θ , although σ2
v and σ2

s̃,1 have some influence. Setting
σ2
θ = 0.15, the volatility of weekly returns in the model is 2.7% compared to 2.3% of the S&P 500.
Finally, the variance of the prior belief about the liquidation value is set at σ2

v = 0.25. This
implies a prior probability of bankruptcy in the next 2 years of about 2.5%. Since there is no guidance
for the precision of interpretations, I set it to half of the precision of prior beliefs, σ2

s̃,1 = 0.5, in
order to closely match the drift characteristics identified in Bernard and Thomas (1989).17

In Bernard and Thomas (1989), the average total price response (immediate response plus drift)
to the announcement of extreme earnings surprises for small firms is 12.5%; 60% percent of the
total price change occurs at or before the announcement date, with the remaining 40% spread over
the next 9 months. In the calibrated model, a similar 12.5% surprise (calibrated by choosing s)
results in a 69%/31% split. An econometrician measuring monthly drifts using 2500 observations

16There is no direct empirical data on the noise trading process. To a great extent this is due to the difficulty in
separating informed trading from noise trading. Dow and Gorton (2008) provide a literature review on noise traders
and note that the identity of noise traders is still an open question. Berkman and Koch (2008) use the dispersion of
the daily net initiated order flow across brokers as a proxy for the level of noise trading. However, their measure of
noise trading is only proportional to σ2

θ and they do not provide the time-series dynamics of their proxy.
17Interpretations might seem very diffuse but keep in mind that much of the uncertainty is resolved at the announce-

ment date from the observation of the corresponding equilibrium price. In effect, the variance of the interpretation
error drops from 0.5 to just 0.08 with the observation of the announcement day price.
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Figure 1: Price drift. Panel A plots the cross-sectional average of prices over the 100 weeks following and including
the announcement, illustrating the average price drift. Panel B plots the average price path (thick line) along with
three of its realizations (thin lines). The parametrization corresponds to the calibration discussed in the main text:
T = 101, n = 1, σ2

v = 0.25, Σs = 0 (no residual uncertainty), Σs̃,1 = σ2
s̃,1 = 0.5, Σs̃,t = 1010 (1 < t ≤ T − 1),

σ2
θ = 0.15, ρ = 0.5, α = 2, s = 1.132, E (v) = 1. The parameter s was chosen so that the measurable price change in

reaction to the announcement (initial reaction plus measurable drift) corresponds to 12.5%. An econometrician with
2,500 observations measuring drift month by month will detect a drift up to week 28 (roughly 7 months). In Panel
A this is identified by the dotted lines. In both Panels, price changes are normalized to the total measurable price
reaction to the announcement by such an econometrician. The initial price response to the announcement is 69%
of the total measurable price reaction, with the remaining 31% spread over the next 28 weeks. In the last 72 weeks
prices increase by an additional 5%, corresponding to the undetectable drift.

(Bernard and Thomas 1989 have around 2700), would find a significant drift up to the seventh
month following the announcement. The model thus seems to be able to generate a realistic drift
for plausible parameter values. Figure 1 shows the average price drift in the 100 periods following
the announcement of positive news (the case of negative news is symmetric) for the calibrated
model.

Taking the calibrated model as the benchmark, Figure 2 shows the impact of the main model
parameters in the way public announcements are incorporated into prices. Note that with alternative
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Figure 2: Price drift comparative statics. Panels A to D plot the price drift for different values of ρ (Panel
A), σ2

θ (Panel B), σ2
s̃,1 (Panel C) and σ2

v (Panel D). The base case (thick lines) corresponds to the parametrization in
Figure 1.

parametrizations 100 weeks may not be long enough for most of information to be incorporated into
prices; in those cases, and as long as consensus learning takes place (ρ < 1 and σ2

θ <∞), the drifts
would continue beyond the 100th week until prices converge to 1.

The speed of mean-reversion of net supply (ρ) and the volatility of net supply (σ2
θ) determine

how much can be learned from the observation of prices; both low ρ and low σ2
θ speed up the

incorporation of information into prices.18 But whereas σ2
θ determines how much can be learned

from the observation of a single price, ρ determines how much more can be learned from the
observation of additional prices. Therefore, a lower ρ speeds up the incorporation of information
in the periods following the announcement, but has no impact on the immediate price reaction to
the announcement.19 This results in a drift that is more concentrated around the announcement
date. In turn, a lower σ2

θ increases the immediate price reaction to the announcement, leaving less
information to be incorporated in subsequent periods leading to a smaller drift, both in magnitude
and duration. The same results are obtained with a smaller volatility of the interpretation errors
(σ2
s̃,1) since there is less uncertainty about the market consensus and thus less to be learned about it.

Finally, the prior uncertainty about the liquidation value (σ2
v) has the opposite impact of σ2

s̃,1 and
18Actually, what matters is the product α2σ2

θ , which represents the ratio of supply noise to risk tolerance. I focus
only on σ2

θ for simplicity.
19There is an exception to the latter when ρ is very close to 1. In that case, the immediate price reaction increases

because investors realize that they will not come close to learn the market consensus before the liquidation date.
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σ2
θ . If investors are confident about prior beliefs (low σ2

v), they put a lot of weight on them and just
a little on their announcement interpretation, which implies that prices provides little information
about the market consensus. Therefore, the immediate price reaction to the announcement is small
and the drift his large and long lasting.

A pattern seems to emerge from this comparative statics exercise: for a given market consensus,
the smaller the immediate price response to the announcement, the larger and longer lasting the
drift is. In particular, this is the case when the announcement is more difficult to interpret or,
equivalently, the more disagreement there is in its interpretation. This suggests a novel testable
implication: for stocks with similarly surprising news (e.g. earnings), those with a smaller initial
price reaction to the announcement should have a larger and longer lasting drift.

4.3 Residual Uncertainty: Multiple Equilibria

Introducing residual uncertainty has two consequences: first, the equilibrium price function can no
longer be determined in closed form; second, there are up to 3 distinct equilibria as in Grundy and
Mcnichols (1989).20 Numerical results suggest that only one of these equilibria exists regardless of
the parametrization chosen; I call it the primary equilibrium. The other equilibria exist only when
there is residual uncertainty, but not if it is too large, and the net supply is persistent (ρ is large)
and not too volatile; these are the secondary equilibria.

The primary equilibrium corresponds to the equilibrium we analyzed in the absence of residual
uncertainty. The introduction of residual uncertainty does not change its properties and so the
mechanism behind the price drift is exactly the same as before. The only effect of residual uncer-
tainty is the decreased relevance of the announcement; the underlying signal of the announcement
is now a noisy, not a noiseless, signal for the liquidation value. Hence, both the immediate and
delayed price response to the announcement are smaller.

The secondary equilibria also deliver a post-announcement drift in expectations and prices.
Like in the primary equilibrium, the drift results from the gradual learning of the market consensus
and consequent correction of the bias toward prior beliefs. However, the mechanism by which the
information about the market consensus is endogenously generated is completely different. It relies
on the price being considerably more sensitive to the underlying signal (s) than to the net supply
(θ1) at the announcement date (date 1), and the opposite to happen in the next period (date 2).
This means that investors can learn a lot about s, but not much about θ1, from the announcement
date price; and that investors can learn a lot about θ2, but not so much about s, directly from the
observation of the subsequent price. However, as long as the net supply is persistent (ρ close to 1)
and supply shocks are not too volatile (σ2

θ is low), investors can learn a big deal about θ1 from θ2.
Investors can then use the improved knowledge about θ1 to revisit the information provided by the
announcement date price and further refine their beliefs about s. Therefore, the date 2 price ends
up providing a reasonable amount of information about s.21 In this scenario, a large θ2 leads to an

20They analyze a special case of the model in this paper, with ρ = 1, T = 3 and a supply shock only at date 1,
finding a non-revealing equilibrium and two revealing equilibria.

21Consider the following example, based on Grundy and Mcnichols (1989): θt = θ ∀t, i.e. ρ = 1, σ2
θ,1 > 0 and
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upward revision of the θ1 and, consequently, to an upward revision of the expectation of s (for the
market to absorb a higher net supply at a given price, the asset has to become more attractive). As
a consequence, the negative price impact of a larger net supply is more than compensated for by
the respective upward revision in the expectation of the liquidation value and date 2 prices become
positively correlated with net supply. At the same time, because the two effects of net supply on
the price partially offset each other, the date 2 price exhibits very little volatility. Finally, almost
all the learning takes place at dates 1 and 2. As a result, there is a meaningful drift for just one
period after the announcement.

Because secondary equilibria have these undesirable properties, do not exist for some parametriza-
tions, and are very hard to find numerically, I focus on the primary equilibrium in the remainder
of the paper.22

4.4 Additional Public Announcements

The effect of additional public announcements on the price dynamics depends on their impact on
the bias in beliefs created by previous announcements which, as we saw, is a key element of the
post-announcement drift. To simplify the exposition, let us focus on what happens when a second
public announcement is released.

When analyzing the effect of an additional public announcement on the bias toward prior be-
liefs there is an important distinction between the case where the underlying signal of the second
announcement is the same of the first announcement and the case it is not. In the first case, the
second announcement provides the same information (the underlying signal) of the first previous
announcement but in a different way, helping investors to improve their interpretation of the first
announcement.23 One example is an analyst’s opinion about a previous earnings announcement;
another is the clarification of some aspects pertaining to a previous announcement. In the sec-
ond case, the new announcement provides novel information. An example is the announcement of
earnings for a different quarter.

When both announcements have the same underlying signal, the second announcement is, in
essence, an exogenous signal for the market consensus interpretation of the first announcement.

σ2
θ,t = 0, t > 1. Writing the conditional expectations as a function of prior beliefs, the underlying signal and the series

of net supply levels, it is straightforward to see that we can write Pt = ϕ0 +ϕs,ts+ϕθ,tθ for some coefficients ϕ0, ϕs,t
and ϕθ,t. Supposing that there is an equilibrium in which ϕs,1/ϕθ,1 6= ϕs,2/ϕθ,2, we can solve the system of equations
for s and θ, and resolve all uncertainty, by date 2. In our general model, σ2

θ,t = σ2
θ,1 > 0, t > 1, and so θt 6= θt−1.

This implies that Pt = ϕ0 + ϕs,ts+
∑t

τ=1 ϕθτ ,tθτ . Therefore, we always have one more variable than equations and
we cannot solve the system of equations for s. But we can get an accurate estimate of s at date 2 if θt is persistent
and not very volatile, and if the sensitivity of the price function to s and θ1 is different enough at dates 1 and 2. The
role of residual uncertainty is to allow the latter to subsist in equilibrium.

22Although not explicitly stated, He and Wang (1995) and Cespa and Vives (2010) analyze only the primary
equilibrium, most likely because it was the only equilibrium they were able to compute numerically.

23Technically, given the assumption that interpretation errors are independent across time (i.e. investors are not
systematically pessimistic or optimistic in their interpretations), the observation of an additional public announcement
based on the same underlying signal generates an additional independent signal for the market consensus interpretation
(the underlying signal) of both announcements. This unequivocally reduces the uncertainty in the interpretation of
these initial announcement.
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Figure 3: Price drift with two announcements. This figure plots the price drift when there is a second
announcement based on the same underlying signal (Panel A) and based on independent underlying signals (Panel
B). The parametrization used on Panel A is: T = 101, n = 1, σ2

v = 0.25, Σs = 0, Σs̃,1 = 0.5, Σs̃,t = 1010 ∀t ∈
[2, 24] ∪ [26, 100], σ2

θ = 0.1, ρ = 0.5, α = 2, s = 1. The parametrization used in Panel B is: T = 11, n = 2, σ2
v = 0.25,

Σs =
[

0.1 0
0 0.1

]
, Σs̃,1 =

[
1 0
0 103

]
, Σs̃,5 =

[
1010 0

0 1

]
Σs̃,t =

[
1010 0

0 1010

]
(t > 1 ∧ t 6= 5), σ2

θ = 0.1,

ρ = 0.75, α = 2, s = 1. In Panel B it was considered a smaller number of time periods due to the difficulty in solving
the model numerically when there is residual uncertainty.

Therefore, the second announcement always decreases the bias in beliefs inherited from the first
announcement. As a result, at the second announcement date the price jumps in the same direction
it was drifting. Afterward, prices will continue to drift in the same direction as long as some
uncertainty about the market consensus subsists. However, since posterior beliefs are now less
biased, that drift will be smaller. Panel A of Figure 3 illustrates this case.

Now, suppose that the first and second announcement have different and independent underlying
signals, s1 and s2.24 In this case, the second announcement does not resolve any uncertainty about
s1; it just creates uncertainty about s2.25 Naturally, the price will jump up (down) at the second
announcement date if most investors are positively (negatively) surprised by the announcement.
However, this price jump is not necessarily followed by a drift in the same direction, as we can see
from Panel B of Figure 3. Suppose that the second announcement is a positive surprise. In this
case beliefs about the underlying signal s2 will be biased downward. But what matters for the drift
is the bias in beliefs about the liquidation value (v), which depends on the bias in beliefs about
both underlying signals. If the first announcement was also a positive surprise, then the beliefs
about both underlying signals are biased downward and clearly the beliefs about the v will remain
biased downward following the second announcement. As a result, the upward jump in price at
the second announcement date is followed by a positive drift. However, if the first announcement
was a negative surprise, the beliefs about each underlying signal are biased in opposite directions.
In this case, the beliefs about v can be biased either upward or downward, depending on which
announcement dominates. If the second announcement is not surprising enough, if its underlying

24The case of correlated underlying signals is a mixture between this and the case of a single underlying signal.
25This is not entirely true, since both underlying signals are linked through the liquidation value v. Therefore, when

investors learn about v from the second announcement, they also indirectly learn a little bit about the first underlying
signal. If the two underlying signals were correlated, then investors could also learn about the first underlying signal
directly from the second announcement.
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signal is not precise enough, or its interpretation is precise enough (implying a small bias in the
beliefs about s2), beliefs about v will remain biased upward, and the upward jump in price at the
second announcement date is followed by a negative drift.

As we can see from Panel A of Figure 3, when there is a single underlying signal the drift is con-
centrated in the days following the first announcement and in the day of the second announcement.
This is precisely the kind of price reaction to earnings announcements that Bernard and Thomas
(1989) document. However, different earnings announcement are more likely to be described as
announcements with different underlying signals. In this case, investors are not necessarily posi-
tively (negatively) surprised by the announcement following a positive (negative) announcement.
But on average, they are. To see why, consider the parametrization used in Panel B of Figure 3. If
investors made no interpretation errors and were able to observe directly s1, they would form beliefs
E (v| s1) = E (s2| s1) = 0.714 upon the observation of the first announcement. Thus, on average
there would be no reaction to the observation of the second announcement. But since investors
make interpretation errors, their beliefs about v and s2 are biased toward the prior belief 0. As a
result, the average investor has beliefs E

(
v| F i4

)
= E

(
s2| F i4

)
< 0.714 which means that investors

will tend to be positively surprised again by the second announcement.

5 Discussion

5.1 Why Prices Are Slow to Incorporate Information

There are two broad categories of explanations for the post-announcement drift and momentum
phenomena: failure to completely account for a priced risk factor; and slow incorporation of infor-
mation on prices. Empirical evidence seems to dismiss the risk-based explanation (e.g. Bernard and
Thomas, 1989; Fama and French, 1996 and Hong et al., 2000), which leaves the slow incorporation
of information on prices as the plausible explanation for these two anomalies. Various studies have
identified ease of trading, analyst coverage and institutional ownership as factors that facilitate the
incorporation of information on prices (e.g. Bernard and Thomas, 1989; Bartov et al., 2000; Hong
et al., 2000; Cohen et al., 2002 and Chan, 2003). Yet, the reason why the average investor is slow
to act on public information has either been overlooked (in Hong and Stein, 1999 slow dissemina-
tion of private information needed to interpret public information is an exogenous assumption); or
explained by behavioral biases (e.g. Daniel et al., 1998 and Barberis et al., 1998).

Perhaps the greatest obstacle in understanding why prices are slow to fully reflect public in-
formation comes from the usual assumption that public information has a one-time impact on
expectations and prices. After all, why would anything change once everyone observes the same in-
formation? What is usually missed is that information needs to be interpreted before it can be used
to form a trading decision, and each individual will obviously do it differently. Differences in innate
ability, in acquired skills, in mood, in the time available to do research (e.g., reading the executive
summary of the earnings report vs. the full report) all contribute to differential interpretation of
public information. If investors hold to their beliefs dogmatically, the public information still has a
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one-time impact on beliefs and prices. But if individuals recognize their limited ability to process
information, they will look for others’ opinions, the market consensus, to revise their own opinions.
When the appropriate conditions are in place (mean-reversion of noise trading), the release of pub-
lic information triggers a stream of information about its market consensus interpretation. Thus,
prices are slow to fully reflect the public information because investors learn gradually about the
market consensus. Chan (2003) reaches a similar conclusion: “[...] I find that investors are slow
to respond to public news. In other words, the underreaction appears to result not from barriers
to knowing news, but to barriers to understanding it. One possibility is that analysts do not give
investors private information, but help them digest public news.”

Another potential explanation for the slow incorporation of information is limited attention.
The model developed in this paper incorporates some aspects of limited attention. Limited atten-
tion, understood as limited time to process information, is one source of differential interpretation.
Different investors will look at the same piece of information from different angles, and focus on
different aspects of the information released. The lack of time to perform an exhaustive analysis
contributes to more heterogeneous interpretations. Also, a subsequent observation of the same basic
information presented in a different way gives investors the opportunity to look at the information
from a different perspective, thus refining their initial interpretation of the information.26 But lim-
ited attention is unlikely to be the only source of differential interpretation. Dedicated financial
analysts are less likely to suffer from limited attention; yet their forecasts still vary significantly.

The model, however, does not incorporate limited attention understood as selective attention,
where some investors are not even aware that the public information exists (see Hirshleifer and
Teoh, 2003 and DellaVigna and Pollet, 2009). Investors gradually becoming aware of the information
certainly contributes to slow incorporation of information in prices. But it is unlikely that a fraction
of the market large enough to cause a significant price impact stays unaware of public news for
periods long enough to explain the post-announcement drift, which lasts for almost 1 year and in
some cases even longer.

5.2 Why the Drift Survives, Even with Sophisticated Institutional Investors

As we previously saw, on average prices increase (decrease) following a good (bad) announcement
because the market consensus is gradually learned. This means that an automated trading strategy
that takes a long (short) position following a good (bad) announcement, yields a positive expected
return. This is true even if the strategy is conditional on the interpretation of the signal instead
of being conditional on the underlying signal itself.27 Every investor knows this. Yet, investors

26Gilbert, Kogan, Lochstoer, and Ozyildirim (2011) show that prices respond to changes in the Leading Economic
Index, which can be computed in advance from previously released information. Huberman and Regev (2001) doc-
ument a large price reaction to the re-release of news for a bio-tech firm, several months after the initial release of
information. However, the extent to which the price reaction to the repackaging of previously available information
is due to reassessment of initial interpretations or to the information finally reaching previously inattentive investors,
is unclear.

27Banerjee et al., 2009 critic Allen et al. (2006) for obtaining a drift conditional on the final realization of the
liquidation value, arguing that conditioning on the final price one can always find drifts even when prices follow
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rationally choose to trade in a way that does not seem to fully exploit this predictability in returns,
allowing the drift to persist.

The reason for this apparently inconsistent behavior lies in the fact that investors only observe
noisy signals for the market consensus, and not the market consensus itself. To illustrate this point,
consider first the simpler case where the source of information is exclusively exogenous which, as
Theorem 8 shows, also produces a post-announcement drift. In this case we obtain (see Appendix
C for derivations)

E (∆P2| s) = V ar
(
v| F i1

)
− V ar

(
v| F i2

)
σ2
v

s, E (∆P3| s) = V ar
(
v| F i2

)
σ2
v

s,

Ei
[
E
(
∆P2| s̃i1

)]
= V ar

(
v| F i1

)
− V ar

(
v| F i2

)
σ2
v + σ2

s̃,1
s, Ei

[
E
(
∆P3| s̃i1

)]
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(
v| F i2

)
σ2
v + σ2

s̃,1
s,

Eθ,i
[
E
(
∆P2| F i1

)]
= 0, Eθ,i

[
E
(
∆P3| F i1

)]
= 0.

Conditioning on market consensus interpretation (s), prices are expected to drift in the direction of
the surprise in s following the announcement, as long as the market consensus is gradually learned
(i.e. V ar

(
v| F i2

)
< V ar

(
v| F i1

)
). Similarly, an investor who conditions only on his announcement

interpretation (s̃i1), expects prices to drift in the direction of the surprise in s̃i1. Since s̃i1 is an
unbiased signal for s, it follows that the average market participant gets it right and expects prices
to drift in the same direction of s. However, when conditioning on all information available at
date 1 (F i1), on average (over net supply shocks) the average market participant expects prices to
remain unchanged after the announcement.28 This means that investors use their information fully
to exploit the drift. The existence of a drift is only detected ex-post or by someone with superior
information.

In the model with endogenous information the conclusions are essentially the same, even though
the predictability of net supply changes gives rise to hedging demand, which complicates things a
little bit (a 3-period example is provided in Appendix C). The only difference is that, on average,
prices are expected to change even when conditioning on F i1. As I explained before, on average
investors form expectations of the liquidation value that are biased toward the prior, since they only
receive noisy signals for the market consensus. Consequently, investors attribute part of the price
change at the announcement date to a supply shock. To illustrate, consider a positive announcement
(s > 0), which implies a positive average price response at the announcement date. Also, focus on
the average case, where the net supply is zero at all dates. Most investors will believe that a negative
supply shock occurred at the announcement date,

Eθ,i
[
E
(
θ1| F i1

)]
= −V ar

(
v| F i1

)
ασ2

s̃,1σ
2
v

s < 0,

martingale processes. This criticism does not apply to the model in this paper, because there is a public announcement
to condition upon. Moreover, it is not necessary to condition on the unobservable underlying signal to expect a drift,
since on average the interpretation of the announcement is unbiased.

28Following the announcement of a positive surprise, on average investors with optimistic (pessimistic) interpreta-
tions will expect a drift (reversal) in the next period. The opposite applies following a negative surprise. However,
on average, market participants do not expect further price changes.
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even though on average θ1 = 0. This shock is expected to dissipate in the periods following the
announcement, and so prices are expected to revert during that period, moving in the opposite
direction of the announcement surprise,

Eθ,i
[
E
(

∆P2| F i1
)]

= −
V ar

(
v| F i2

)
V ar

(
v| F i1

) (
1− ρ+ α2σ2

θσ
2
s̃,1

)
α2σ2

θ

σ2
v + α2σ2

θσ
2
s̃,1

(
σ2
v + σ2

s̃,1 + α2σ2
θσ

2
s̃,1σ

2
v

) (1− ρ) s < 0.

But, at the same time, investors also expect prices to drift in the direction of the surprise in s.
Thus, once the net supply level is close enough to its mean and the adjustment in the net supply
level becomes small, prices are expected to revert again and drift in the same direction of s,

Eθ,i
[
E
(

∆P3| F i1
)]

= V ar
(
v| F i2

)
V ar

(
v| F i1

)
σ2
s̃,1σ

2
v

(1− ρ) s > 0.

This price change predictability survives in equilibrium because the hedging demand offsets the
short-run demand: prices are expected to decrease in the short-run, but they are expected to
increase in the long-run. As a result, the positive long-run hedging demand offsets the negative
short-run demand, clearing the market (recall that on average the net supply is zero). This means
that the expected short-run reversal prevents investors from exploiting the drift as fully as in the
model with exogenous information. That is, over the long run investors expect prices to drift,

Eθ,i
[
E
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)]
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2
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The average investor correctly expects prices to drift when conditioning only on his interpreta-
tion (s̃i1). However, he cannot do better by exploiting this expectation. Any strategy based only
on a subset of the information available will be suboptimal, since investors are rational and fully
understand how the economy works. Nonetheless, it is interesting to compare how this and other
simple strategies designed to take advantage of the drift compare to the optimal trading strategy. I
consider two types of strategies, buy&hold and myopic; and two different information sets, all infor-
mation available (F i) and only the announcement interpretation (s̃i). In both types of strategies,
investors trade as in the static model.29 The difference is that in the buy&hold strategy they trade
only at the announcement date, whereas in the myopic strategy they trade every period, adjusting
their demands to reflect price changes and updated beliefs (the latter only if using information set
F i).

Table 1 provides the unconditional average, standard deviation, Sharpe ratio and certainty
equivalent of the terminal wealth obtained with each of these four strategies plus the optimal
strategy, based on the 100,000 simulations of the economy using the calibration described in Section
4.2 and W0 = 0. The numbers in parenthesis correspond to the values conditional on the randomly
chosen P1 = 0.474 and s̃i1 = 0.127. It is clear that, although profitable, the alternative strategies

29Demand is given by Xi
t = E(v|Ft)

αV ar(v|Ft) for some information set Ft.
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Optimal Buy&Hold (F i) Myopic (F i) Buy&Hold (s̃i) Myopic (s̃i)

E (WT ) 0.128
(0.069)

0.094
(0.027)

0.105
(0.041)

0.102
(0.085)

0.121
(0.118)

Std (WT ) 0.246
(0.169)

0.253
(0.117)

0.229
(0.111)

0.358
(0.365)

0.336
(0.357)

E(WT )
Std(WT )

0.521
(0.410)

0.370
(0.233)

0.460
(0.370)

0.285
(0.233)

0.360
(0.331)

CE(WT ) 0.0670
(0.0363)

0.0429
(0.0135)

0.0567
(0.0268)

−0.0048
(−0.0487)

−0.0482
(−0.1021)

Rel CE(WT ) 100%
(100%)

64%
(37%)

85%
(74%)

−7%
(−134%)

−72%
(−281%)

Table 1: Performance of alternative strategies: The performance of the optimal trading strategy is compared
with that of 4 alternative strategies that attempt to exploit the price drift. Investors following buy&hold strategies
trade as in the static model, but only at the announcement date, and hold their portfolio until the liquidation date.
Investors following myopic strategies trade every period as in the static model (i.e. as if they were to hold the portfolio
until the liquidation date), adjusting for price changes and, possibly, revisions in beliefs. For each type of strategy,
investors can condition their decisions on all information available (announcement interpretation and price, denoted
by F i) or only on their announcement interpretation (s̃i). The table reports the unconditional average, standard
deviation, Sharpe ratio and certainty equivalent of the terminal wealth based on 100,000 simulations of the risky
asset, using the calibration detailed in Section 4.2 and W0 = 0. The numbers in parenthesis correspond to the same
values conditional on the randomly chosen values P1 = 0.474 and s̃i1 = 0.127.

are suboptimal. The more the strategy departs from the optimal one, the smaller the Sharpe
ratio and the certainty equivalent of wealth: myopic strategies outperform buy&hold strategies,
whereas strategies conditioning on all information beat those conditioning only on the announcement
interpretation. In particular, ignoring information contained in prices results in a loss of utility
compared to not trading at all.30 These results are similar to those of Biais et al., 2010, who
show that in a dynamic REE model with private information momentum strategies may be more
profitable than price-contingent strategies (similar to the optimal strategy in this paper) but are,
nonetheless, suboptimal.

But what if a fraction of the market participants do not make interpretation errors and directly
observe s? We can think of these agents as institutional investors, who have time and resources
to correctly interpret the announcement.31 These institutional investors will expect prices to drift,
even when conditioning on all information available to them, and will trade accordingly, buying
from (selling to) individual investors when news are good (bad). As a result, prices will incorporate
information faster. However, as long as there is residual uncertainty, institutional investors face
some risk, since neither prices at future trading dates nor the liquidation value are known with
certainty; the former due to future supply shocks, the latter due to residual uncertainty.32 Risk

30It can be formally demonstrated for the 3-period example with endogenous information that a buy&hold strategy
conditioning on all available information is the one that provides higher expected utility among all buy&hold strategies,
but is outperformed by the optimal dynamic strategy.

31Institutional investors do not have to be especially gifted. Instead, they may employ several individuals that form
their own interpretation, and then pool those interpretations to form a more precise interpretation. In this sense,
what distinguishes institutional investors from individual investors is the ability to directly use the interpretations
of several individuals, whereas individual investors have to rely on prices to indirectly observe the interpretations of
others.

32The risk in exploiting the drift decreases with the distance to the liquidation date. The more trading periods
there are until the liquidation date, the smaller chance that one cannot unwind the speculative position with profit
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averse institutional investors are then forced to trade conservatively, limiting the price impact and
information spillover. Therefore, the drift, albeit attenuated, can still persist in the presence of
investors who can interpret the announcement accurately. (An extension of the model to two types
of investors with different interpretation precisions and risk aversion is provided in Appendix D.)

In reality, although institutional investors seem to be able to interpret information more precisely
than individual investors they cannot do it perfectly; moreover, they face barriers that prevent them
to make full use of their informational advantage (Cohen et al., 2002). This reinforces the idea that
institutional investors facilitate the incorporation of information in prices, but only to a limited
extent. Hence, a drift can persist even in the presence of institutional investors.

5.3 Empirical Evidence on the Post-Announcement Drift

Decades of empirical research on the post-announcement drift phenomenon make it hard to find
new testable implications. But, on the bright side, we have a wealth of empirical facts which can be
used to validate the model. The most salient empirical facts on the post-announcement drift are:

1. Prices are slow to incorporate information following almost all kinds of announcement: earn-
ings surprises (Ball and Brown, 1968; Foster et al., 1984 and Bernard and Thomas, 1989,
1990); change in analyst recommendations (Michaely and Womack, 1999); share repurchases
(Ikenberry et al., 1995); seasoned equity offerings (Loughran and Ritter, 1995); venture cap-
ital distributions (Gompers and Lerner, 1998); stock splits (Grinblatt et al., 1984); dividend
initiations and omissions (Michaely et al., 1995).33

2. The post-announcement drift is long lasting: 3 quarters for earnings surprises (Bernard and
Thomas, 1989); 4 to 5 years for tender offers and seasoned equity offerings (Ikenberry et al.,
1995 and Loughran and Ritter, 1995).

3. The post-announcement drift is larger for smaller firms, stocks with larger transaction costs,
stocks with smaller institutional ownership (Bartov et al., 2000 and Cohen et al., 2002), and
for negative news (Cohen et al., 2002).

4. The post-earnings announcement drift is concentrated in the week following the announce-
ment, and in the days surrounding the subsequent quarterly earnings announcements (Bernard
and Thomas, 1989).

All of these empirical facts can be explained by the model. According to the model, all public
announcements whose information is open to interpretation will originate a drift. This includes
the vast majority of public announcements, which explains why the post-announcement drift is so
pervasive. One possible exception is the announcement of a price target, since a price target can be
immediately used by an investor to make a trading decision. However, it can still be argued that
price targets are open to subjective interpretation, because of credibility concerns.

before the liquidation date and has to face the residual uncertainty associated to the liquidation value.
33See Appendix A of Daniel et al. (1998) for a more complete list of references on stock price patterns.
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In the model the drift results from learning the market consensus interpretation from the ob-
servation of subsequent prices. Each price provides just a little extra information about the market
consensus, which makes learning process a gradual one. This explains why in general the drift lasts
for so long. In particular, the larger the interpretation uncertainty, the longer lasting the drift. It can
also explain why the drift is concentrated in the periods immediately following the announcement:
investors revise their beliefs more aggressively when the uncertainty about the market consensus is
larger. On the other hand, the drift is concentrated around the date of the following announcement
because by then investors’ still lack a full understanding of the initial announcement; not because
they do not understand the process governing the signals, as suggested by Bernard and Thomas
(1989). As a result, investors are systematically positively (negatively) surprised by announcements
following positive (negative) announcements. This explanation is in line with the evidence pro-
vided by Ball and Bartov (1996), who show that investors do recognize the earnings process (unlike
Bernard and Thomas 1989 claim), but instead underestimate its parameters.

Finally, the model also predicts that the drift should be larger for stocks with less institutional
trading, since institutional investors are assumed to have superior ability to interpret the announce-
ment. Even though the model does not produce predictions directly related to the drift for small
stocks, stocks with large transactions costs or for the asymmetry between the drift for good and bad
news, Bartov et al. (2000) and Cohen et al. (2002) show that institutional investors are less active
in small cap stocks, stocks with large transactions costs and face restrictions on short-selling.34 In
fact, Bartov et al. (2000) show that controlling for institutional ownership, transaction costs and
firm size have no impact on the drift.

Another prediction, that has not yet been tested in the context of the post-announcement drift,
is that the drift should last longer for stocks with less analyst coverage. Analysts’ recommendations
and forecasts help to decrease interpretation errors and speed up the incorporation of information
on prices, as Chan (2003) suggests. Hong et al. (2000) show that momentum is stronger for stocks
with low analyst coverage, which suggests that the same might be true for the post-announcement
drift.

But the main, still untested, model prediction is that the larger the interpretation uncertainty,
the larger and longer the drift, and the smaller the price reaction to the announcement (see Panel
C of Figure 2). This prediction can be tested in two different ways. The direct approach is to
use a proxy for interpretation uncertainty and test whether interpretation uncertainty is negatively
associated to the immediate price reaction to the announcement and positively associated to the
magnitude and duration of the subsequent drift. The indirect approach is to test whether for stocks
with similarly surprising news (e.g. earnings) the immediate price response to the announcement is
inversely related to the magnitude and duration of the subsequent drift.

There is already some evidence supporting this prediction using the direct approach. Garfinkel
and Sokobin (2006) and Choi and Kim (2001) use unexpected volume at earnings announcement date
as a proxy for investor opinion divergence. They find a positive association between unexpected

34Cohen et al. (2002) provide a comprehensive discussion on the frictions that keep institutional investors from
trading more aggressively on their information.
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volume and the size of the drift, as the model predicts, but only for positive earnings surprises.
Choi and Kim (2001) suggest that short-selling constraints may be an explanation for why the
result stands only for positive earnings. Short-selling constraints bar institutional investors from
taking advantage of the underreaction to negative news, which has a negative impact on unexpected
volume. Controlling for institutional trading may yield the predicted results. In addition, Zhang
(2006) finds that the post-analyst forecast revision drift is positively associated with several proxies
for information uncertainty.

In turn, Hirshleifer et al. (2009) find a weaker price reaction to earnings announcement and
a stronger post-announcement drift in days where there are many earnings announcements made
by different firms. This supports the idea that investors have limited time to process information,
which leads to a less precise interpretation of information. However, it is unclear to which extent
the results are driven by investors rushing their analysis and then looking for others’ opinions, as
predicted by the model, or by investors missing the initial earnings announcement and catching
up with the news later on. One way to distinguish between these two hypotheses is to look at
the drift in subsequent calm days. If investors are missing news and trying to catch up when they
can, prices should adjust faster in subsequent calm days, when investors have time to go through
past news. Also, if investors use weekends to catch up with past news they missed, these drifts
should be similar after the first few weekends following the announcements. However, DellaVigna
and Pollet (2009) show that the drift is considerably stronger for Friday announcements (investors
are likely distracted by the weekend proximity) than for other weekday announcements in the first
60 days following the announcement. This evidence suggests that investors catching up with news
they previously missed is not what drives the post-announcement drift.

5.4 Post-Announcement Drift, Hence Momentum?

Chan (2003) shows that momentum is associated to news releases, supporting the view that post-
announcement drift and momentum are two faces of the same coin. Chordia and Shivakumar (2006)
show that momentum (price momentum) is captured by the systematic component of post-earnings
announcement drift (earnings momentum), leading them to conclude that “... the price momentum
anomaly is a manifestation of the earnings momentum anomaly...”. In face of this evidence, it is
tempting to jump to the conclusion that if the model generates post-announcement drift, then
it generates momentum as well. However, the relationship between these two anomalies is not
mechanical.

The problem is that conditioning on the announcement date return (conditioning on a return
over a period that includes the announcement date gives the same results), we capture the price
response not only to news but also to the supply shock. For example, a portfolio of stocks with
a large announcement day return will include both stocks with positive news and stocks with a
negative supply shock (and not so positive news). The price of the former will drift upwards,
contributing to momentum. But the price of the latter will revert, and for two reasons. First,
because the negative net supply will revert to its mean, pushing prices down. Second, because
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Panel A: Stocks sorted by news
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Panel B: Stocks sorted by returns

Figure 4: Drift conditional on news vs. drift conditional on announcement date return. This figure
plots the cumulative price change from dates -5 to 50 for quintile portfolios formed by sorting stocks by news (Panel
A) and by the announcement date price change (Panel B). The announcement date is normalized to date 0. Each
of the 100,000 stocks is priced by the price function (5), and corresponds to one realization of the vector of random
variables {s, εθ,t : 1 ≤ t ≤ 106}. The parametrization used is: T = 107, n = 1, σ2

v = 0.25, Σs = 0, Σs̃,6 = 1,
Σs̃,t = 1010 (1 < t ≤ T − 1 ∧ t 6= 6), σ2

θ = 0.1, ρ = 0.5, α = 2.

over-optimistic expectations of the liquidation value, caused by the negative supply shock, will be
gradually corrected. Since investors are able to flawlessly extract information from prices (although
not from announcements), the expectation of the liquidation value conditional on prices is, on
average, unbiased.35 This means that, if not for the mean reversion of the, on average, negative
supply shock, there would be neither momentum nor reversal when conditioning on returns. The
slight reversal the model produces (see Panel B of Figure 4) is due to the mean-reversion of net
supply.

Even though this result seems disappointing, Foster et al. (1984) find very similar empirical
results to those illustrated in Figure 4. There is a drift when conditioning on unexpected earnings,
but no drift with a very slight reversal when conditioning on the abnormal return around the
announcement date. Their results are strikingly similar to what we obtain from the model. What
we can take from this is that it matters whether we condition on the event, or on the price reaction
to the event. Researchers that use the latter as a proxy for the former, should keep this in mind.

The apparent contradiction in the findings of Foster et al. (1984) and Chan (2003) is likely to be
explained by differences in methodology (event-time vs. calendar-time) and by the fact that Foster
et al. (1984) focus on the first 60 days following the announcement, whereas Chan (2003) considers
a longer horizon. Chan (2003) finds a slight reversal in the first month after portfolio formation,
and only a slight drift in the first month when excluding the first week after portfolio formation.
In addition, portfolio formation based on monthly returns, as used by Chan (2003), means that the
subsequent performance analysis misses anything between 1 to 5 weeks of returns after the news
event. This means that the drift document by Chan (2003) starts close to the end of the horizon
considered by Foster et al. (1984), which reconciles both studies.

The question now is how can we modify the model to generate a drift conditional on the an-
35Banerjee et al. (2009) also point out that there is no drift conditional on prices in REE models because investors

form unbiased expectations from prices.
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nouncement day return, i.e. momentum, in addition to a drift conditional on the announcement.
The latter is obtained by assuming that investors cannot fully understand the announcement, thus
making imperfect interpretation of the announcement that lead them to form beliefs biased toward
the prior. Yet, it is assumed that investors fully understand how the equilibrium price is formed,
allowing them to flawlessly extract information from prices. As a result, beliefs conditional on prices
are unbiased. Since there is no bias to be corrected, the gradual learning of the market consen-
sus does not generate momentum. Although the assumption that investors can flawlessly extract
information from prices is useful to derive the equilibrium in a rational expectations framework,
it is hardly a realistic one. Investors need to take in consideration the actions of all other market
participants in order to correctly determine the coefficients of the price equation, which is anything
but straightforward.

So, let us entertain the idea that investors make unbiased and independent mistakes when
extracting information from prices. The additional source of noise decreases the precision of the
information extracted from prices, making beliefs conditional on prices become biased toward the
prior. As investors learn more about the market consensus from subsequent prices (because supply
shocks, extraction errors, or both, revert to their mean), this bias is gradually corrected, generating
momentum.

Mistakes in the extraction of information from prices can be proxied within the current model
by assuming that net supply shocks are more volatile than they really are (see Panel A of Figure
5).36 That is, being σθ the true volatility of net supply shocks, σ̂θ > σθ is used to determine the
coefficients of the price equation, whereas σθ is used to simulate net supply shocks. This means
that the volatility of net supply shocks within the model (σ̂θ) now lumps together the true volatility
of net supply shocks (σθ) and the volatility of the information extraction error. In this case, the
parameter ρ will be a function of the speed of mean reversion of the two sources of noise in prices.
Extraction errors more (less) persistent than supply shocks are proxied by a ρ̂ larger (smaller) than
its real value ρ (see Panel B of Figure 5).

With this ad hoc modification to the model, momentum and post-announcement drift have
the same underlying cause: differential interpretation of the public information and gradual learn-
ing of the market consensus. As a result, the model generates similar predictions for the post-
announcement drift and momentum, which is in accordance with the similarities between the em-
pirical evidence on post-announcement drift and momentum. In particular, the empirical findings
of Hong et al. (2000) and Chan (2003) are consistent with the model. Momentum is stronger for
small illiquid looser stocks with news, which are likely to attract less institutional trading; and for
stocks with low analyst coverage, which implies that there is less help from analysts in interpreting
the announcement.

In addition, the model can now shed some light on why post-earnings announcement drift
and momentum strategies do not subsume each other. Chan et al. (1996) find that momentum

36An alternative is to consider that investors do not make mistakes in the extraction of information from prices,
but systematically overestimate the volatility of the supply shock, thus extracting a less than optimal amount of
information from prices. However, there is no apparent reason why this should be the case.
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Figure 5: Inaccurate extraction of information from prices and the drift conditional on announcement
date return. This figure plots the cumulative price change from dates -5 to 50 for the top quintile portfolio when
proxying for investors making unbiased mistakes while extracting information from prices. Inaccurate extraction of
information from prices is proxied by considering a larger supply shock volatility in the model (σ̂2

θ) than its real value
(σ2
θ); the persistence of the supply shock used in the model (ρ̂) may be different than its real value (ρ) if the persistence

of the true supply shocks differs from the persistence of the mistakes in the information extraction process. Panel A
shows the effect of inaccurate extraction of information (with ρ̂ = ρ). Panel B shows the effect of different degrees of
persistence of the mistakes in the information extraction process when σ̂2

θ = 0.15 > σ2
θ ; ρ̂ < (>) ρ means that these

mistakes are less (more) persistent than supply shocks. Everything else is as in Figure 4.

(price momentum) and post-earnings announcement drift (earnings momentum) are both profitable
after controlling for the other. Brandt et al. (2008) find similar results when using the abnormal
return around the announcement date instead of past returns as the basis of their price momentum
strategy. Both authors hypothesize that returns contain more than just information about earnings.
This would explain why price momentum strategies are more profitable and are not subsumed by
earnings momentum strategies, but not why earnings momentum strategies are not subsumed by
price momentum strategies. We can use the model to rationalize these findings. Consider that
two signals are announced simultaneously: one is earnings related, the other non-earnings related.
Econometricians can only obtain historical information about the earnings related signal, allowing
them to compute the standardized unexpected earnings (SUE). Within the context of the model,
knowing the SUE is like knowing the market consensus interpretation of the earnings related signal.
A strategy based on high minus low SUE/market consensus stocks generates a positive return,
because of the post-earnings announcement drift. It has the advantage of conditioning on a (more)
direct measure of one of the signals, but completely ignores the other signal. In turn, a strategy
based on high minus low earnings announcement return (EAR), generates a positive return because
prices also drift when conditioning on the price reaction to the announcement. This strategy has
the advantage of taking into account both signals, but it is only an indirect measure of these signals,
plagued by noise trading. Therefore, both measures provide extra information over the other, reason
why Brandt et al. (2008) find that both strategies are largely independent.37 For example, a high
SUE stock may have good or bad non-earnings related news. And a high EAR stock may have
good earnings and non-earnings news or not so good news and a large non-informationally driven

37By the contrary, Sinha (2011) shows that when considering not just earnings announcements, but all news releases,
a strategy based on news tonality subsumes the price momentum strategy.
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demand (noise trading). But a stock with high SUE and high EAR is likely to have good earnings
and non-earnings related news, especially if the goodness of both pieces of information is positively
associated.

Unlike Barberis et al. (1998), Daniel et al. (1998) and Hong and Stein (1999), the model in
this paper does not account for long-term reversal. Although this could be seen as a limitation,
empirical evidence suggests that momentum and reversal are two unrelated phenomena, likely to be
explained by different factors. For instance, Chan (2003) finds reversal for stocks with and without
news, although momentum is an exclusive of stocks with news. And the 3-factor model of Fama
and French (1996) successfully account for long-term reversals, but not for short-term momentum.

Compared to the models developed by Barberis et al. (1998) and Daniel et al. (1998), the
advantage of this model is that it does not rely on specific behavioral biases to explain why prices
are slow to incorporate information. Instead, this model builds on the intuitive notion that people
process information differently when exposed to the same evidence. In a certain sense, this model is
closest to the model of Hong and Stein (1999). The difference is that I do not need to exogenously
impose gradual diffusion of information. Instead, this comes as an endogenous result of the model.
It is important to note that Hong and Stein’s assumption that momentum traders do not extract
information from prices is more than a simplifying assumption to avoid a fully revealing REE in
the absence of noise trading. Instead, it is a crucial assumption to generate momentum. Like in our
model, there is no momentum if investors can correctly extract information from prices, regardless
of the presence of noise trading.

6 Conclusion

In this paper I developed a model that incorporates the idea of differential interpretation of infor-
mation and is able to generate a post-announcement drift. Differential interpretation of information
transforms public raw information into private interpreted information. If investors recognize their
limited ability to interpret the announcement, they will look for other investors’ opinions in prices.
Noise trading prevents investors from learning the market consensus interpretation of the announce-
ment from the observation of a single price. But if noise trading is mean-reverting, investors can
gradually learn the market consensus from the observation of a series of prices. As investors become
more confident about their interpretation of the public announcement, they put more weight on it,
and the information contained in the announcement becomes gradually incorporated into prices,
generating a post-announcement drift.

Even if differential interpretation of information is not the explanation for the post-announcement
drift, the model’s ability to explain the extant empirical evidence suggests that at least it plays an
important role. The attractiveness of the model also relies on its parsimony and plausible assump-
tions.

The model also highlights that gradual information flow is a necessary but not a sufficient
condition to generate momentum. As long as investors flawlessly extract information from prices,
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they form unbiased beliefs conditional on returns and there is no momentum. This means that in
Hong and Stein (1999), momentum does not automatically follow from the exogenous assumption
that private information flows gradually into the market. To obtain momentum it is also crucial
that those agents who observe private information do not extract information from prices.

In reality, though, the truth is likely to lie between these two extremes: investors extract infor-
mation from prices, but do not do it perfectly. This allows differential interpretation of information
to generate both post-announcement drift and momentum, providing a unified explanation for both
phenomena. Even though the model does not account for long-run reversals, this is not necessarily
a weakness. The current empirical evidence suggests that post-announcement drift and momentum
are more likely to be related with each other, than with long-run reversal.
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Appendix

A Proofs
To prove the results of the paper, I use the following lemmas.

Lemma 9. (Gaussian filtering) For every t, let the m1-dimensional vector of state variables at date t,
xt, and the m2-dimensional vector of observations at date t, yt, follow the processes

xt = Atxt−1 + εx,t, yt = Btxt + εy,t, t = 1, 2, ...

where the m3-dimensional vector εx,t ∼ N (0,Σx,t) and the m4-dimensional vector εy,t ∼ N (0,Σy,t) are
independent Gaussian vectors and At and Bt are matrices of the appropriate order. x0 ∼ N (x0,Σ0) and
independent of εx,t and εy,t . Let Ft = {yτ}τ=1,...,t. Then,

E (xt| Ft) = AtE (xt−1| Ft−1) +Kt [yt − E (yt| Ft−1)]

= AtE (xt−1| Ft−1) +Kt [yt −BtAtE (xt−1| Ft−1)]

V ar (xt| Ft) = (Im1 −KtBt) [AtV ar (xt−1| Ft−1)A′t + Σx,t] (15)

Kt = [AtV ar (xt−1| Ft−1)A′t + Σx,t]B′t {Bt [AtV ar (xt−1| Ft−1)A′t + Σx,t]B′t + Σy,t}
−1
.

Proof. These results are immediate from Theorem 13.4 and Corollary 2 in Liptser and Shiryaev (2001, pp.71-
72, vol. II)

Lemma 10. Let φ ≡ a+b′ε+ε′cε, where ε ∼ N (0,Σ) denotes a Gaussian vector, a is a constant scalar, b is
a constant vector and c a constant symmetric matrix of appropriate dimensions. If Σ−1 − 2c is a symmetric
positive definite matrix, then

E
(
eφ
)

= ea+ 1
2 b
′(Σ−1−2c)−1

b√
|Σ| |Σ−1 − 2c|

.

Proof. Writing the expectation E
(
eφ
)
explicitly we obtain

E
(
eφ
)

= ea
ˆ
eb
′ε+ε′cε e

− 1
2 ε
′Σ−1ε

(2π)
N
2 |Σ|

1
2
dε.

To eliminate the integral, rearrange the terms in order to obtain the integral of the probability density
function of a normal distributed vector multiplied by a constant. Proceeding in this way, we find that

ea
ˆ
eb
′ε+ε′cε e

− 1
2 ε
′Σ−1ε

(2π)
N
2 |Σ|

1
2
dε = ea+ 1

2 b
′(Σ−1−2c)−1

b√
|Σ| |Σ−1 − 2c|

ˆ
e
− 1

2

[
ε−(Σ−1−2c)−1

b
]′(Σ−1−2c)

[
ε−(Σ−1−2c)−1

b
]

(2π)
N
2

∣∣∣(Σ−1 − 2c)−1
∣∣∣ 1

2
dε

= ea+ 1
2 b
′(Σ−1−2c)−1

b√
|Σ| |Σ−1 − 2c|

which proves the lemma.

Lemma 11. (Conditional Normal distribution) Let them1-dimensional vector x1 and them2-dimensional
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vector x2 be jointly normal [
x1

x2

]
∼ N

([
x̄1

x̄2

]
,

[
Σ11 Σ12

Σ12 Σ22

])
.

Then, the distribution of x1 conditional on x2 is

x1|x2 ∼ N
(
x̄1 + Σ12Σ−1

22 (x2 − x̄2) ,Σ11 − Σ12Σ−1
22 Σ′12

)
.

Proof. This well know result is adapted from Theorem 13.1 of Liptser and Shiryaev (2001, p.61, vol. II).

A.1 Proof of Lemma 2

The proof of the lemma is a straightforward application of Lemma 9. All we need is to identify the relevant
unobservable state variable and observation processes, and the prior beliefs.

Starting with the beliefs conditional on total information (F it ), the vector of date t unobservable state
variables and observations are

xt
(n+2×1)

=

 v

s

θt

 , yt
(n+1×1)

=
[
ξt

s̃it

]
, 1 ≤ t ≤ T − 1.

The only time dependent state variable is θt, whose process is given by equation (1). We can then define the
process for the vector of state variables as

At
(n+2×n+2)

=
[

In+1 0(n+1×1)

0(1×n+1) ρ

]
, Σx,t

(n+2×n+2)
=
[

0(n+1×n+1) 0(n+1×1)

0(1×n+1) σ2
θ

]
t = 1, 2, ..., T − 1.

Using equation (3), the prior expectation and variance of the vector of state variables are

E (x0| F0) = 0(n+2×1), V ar (x0| F0) =

 σ2
v σ2

v1(1×n) 0
σ2
v1(n×1) σ2

v1(n×n) + Σs 0(n×1)

0 0(1×n) 0

 .
The process for the vector of observations is easily determined from equation (4) and the definition of ξt,
equation (6),

Bt
(n+1×n+2)

=
[

0 pt pθ,t

0(n×1) In 0(n×1)

]
, Σy,t

(n+1×n+1)
=
[

0 0(1×n)

0(n×1) Σs̃,t

]
t = 1, 2, ..., T − 1

In the case of beliefs conditional on common information (Fct ), the only difference is that the vector
of observations reduces to one element, yt = ξt. Therefore xt, At, Σx,t, E (x0| F0) and V ar (x0| F0) are
defined as above, whereas yt and Bt correspond to the first row and Σy,t corresponds to the first entry of the
vector/matrices defined above.

Applying Lemma 9 to the state variable and observation vectors as defined above, we obtain the filtering
equations (7) and (8) as well as matrices Kt and Kc

t .
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A.2 Proof of Lemma 3

I will start by deriving the processes for E
(
s| F it+1

)
, E
(
s| Fct+1

)
and E

(
θt| F it+1

)
for t = 1, 2, ..., T − 2, from

which the process for ψt+1 can be easily determined. Let Kt and Kc
t be partitioned as follows

Kt
(n+2×n+1)

=


kv,ξ,t
(1×1)

kv,s,t
(1×n)

ks,ξ,t
(n×1)

ks,s,t
(n×n)

kθ,ξ,t
(1×1)

kθ,s,t
(1×n)

 , Kc
t

(n+2×1)
=


kcv,ξ,t
(1×1)

kcs,ξ,t
(n×1)

kcθ,ξ,t
(1×1)

 ,

where, for instance, ks,ξ,t is an n-dimensional column vector corresponding to entries of Kt which gives the
impact of the surprise in ξt on the beliefs about the vector of signals s.

Starting from equation (7), substituting for ξt+1 and θt+1 using equations (6) and (1), we obtain

E
(
s| F it+1

)
= E

(
s| F it

)
+ ks,ξ,t+1

[
ξt+1 − E

(
ξt+1| F it

)]
+ ks,s,t+1

[
sit+1 − E

(
s| F it

)]
= E

(
s| F it

)
+ ks,ξ,t+1

[
pt+1s+ pθ,t+1θt+1 − E

(
pt+1s+ pθ,t+1θt+1

∣∣F it)]
+ks,s,t+1

[
s+ εit+1 − E

(
s| F it

)]
= E

(
s| F it

)
+
(
ks,ξ,t+1pt+1 + ks,s,t+1

) [
s− E

(
s| F it

)]
+ ks,s,t+1ε

i
t+1

+ks,ξ,t+1pθ,t+1εθ,t+1 + ρks,ξ,t+1pθ,t+1
[
θt − E

(
θt| F it

)]
. (16)

From the definition of ξt, equation (6), we obtain

ξt = pts+ pθ,tθt ⇔ θt = ξt − pts
pθ,t

. (17)

Since ξt is adapted to F it , we have that ξt − E
(
ξt| F it

)
= 0. Substituting equation (17) into (16) and

rearranging, we finally obtain the process for E
(
s| F it+1

)
,

E
(
s| F it+1

)
= E

(
s| F it

)
+
[
ks,s,t+1 + ks,ξ,t+1

(
pt+1 − ρ

pθ,t+1

pθ,t
pt

)] [
s− E

(
s| F it

)]
+ks,s,t+1ε

i
t+1 + ks,ξ,t+1pθ,t+1εθ,t+1.

The process for E
(
θt+1| F it+1

)
is derived exactly in the same way and is similar to the process for

E
(
s| F it+1

)
. The only difference is that instead of E

(
s| F it

)
, ks,ξ,t+1 and ks,s,t+1, we have ρE

(
θt| F it

)
,

kθ,ξ,t+1 and kθ,s,t, respectively.
Starting from equation (8) and following similar steps as in (16) we have that

E
(
s| Fct+1

)
= E (s| Fct ) + kcs,ξ,t+1pt+1 [s− E (s| Fct )] + kcs,ξ,t+1pθ,t+1εθ,t+1

+ρkcs,ξ,t+1pθ,t+1 [θt − E (θt| Fct )] . (18)

Substituting equation (17) into (18), and noting that ξt is adapted to Fct , we obtain

E
(
s| Fct+1

)
= E (s| Fct ) + kcs,ξ,t+1

(
pt+1 − ρ

pθ,t+1

pθ,t
pt

)
[s− E (s| Fct )] + kcs,ξ,t+1pθ,t+1εθ,t+1
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= E (s| Fct ) + kcs,ξ,t+1

(
pt+1 − ρ

pθ,t+1

pθ,t
pt

)[
E
(
s| F it

)
− E (s| Fct )

]
+kcs,ξ,t+1

(
pt+1 − ρ

pθ,t+1

pθ,t
pt

)[
s− E

(
s| F it

)]
+ kcs,ξ,t+1pθ,t+1εθ,t+1. (19)

Bringing together the results above it is straightforward to define

Ft+1
(2n+2×2n+2)

=


1 0(1×n) 0(1×n) 0

0(n×1) In 0(n×n) 0(n×1)

0(n×1) kcs,ξ,t+1

(
pt+1 − ρ

pθ,t+1
pθ,t

pt

)
In − kcs,ξ,t+1

(
pt+1 − ρ

pθ,t+1
pθ,t

pt

)
0(n×1)

0 0(1×n) 0(1×n) ρ

 (20)

and

Gt+1
(2n+2×2n+2)

=


0 0(1×n) 0(1×n) 0

0(n×1) ks,s,t+1 + ks,ξ,t+1

(
pt+1 − ρ

pθ,t+1
pθ,t

pt

)
ks,s,t+1 ks,ξ,t+1pθ,t+1

0(n×1) kcs,ξ,t+1

(
pt+1 − ρ

pθ,t+1
pθ,t

pt

)
0(n×n) kcs,ξ,t+1pθ,t+1

0 kθ,s,t+1 + kθ,ξ,t+1

(
pt+1 − ρ

pθ,t+1
pθ,t

pt

)
kθ,s,t+1 kθ,ξ,t+1pθ,t+1

 , (21)

t = 1, 2, ..., T − 2.
The process for ∆Pt+1 is obtained in a similar way as the one for ψt+1. However, because of the risky

asset’s liquidation at time T , the process for ∆Pt+1 at t = T − 1 is distinct from the process at previous
dates. I will first derive the process for ∆Pt+1 at t = 1, 2, ..., T − 2. Using the price function (5), substituting
for θt+1 using (1) and for E

(
s| Fct+1

)
using (19), we have

∆Pt+1 = p̂t+1E
(
s| Fct+1

)
+ pt+1s+ pθ,t+1θt+1 − p̂tE (s| Fct )− pts− pθ,tθt

=
[
pt+1 − pt + p̂t+1k

c
s,ξ,t+1

(
pt+1 − ρ

pθ,t+1

pθ,t
pt

)]
E
(
s| F it

)
(22)

+
[
p̂t+1 − p̂t − p̂t+1k

c
s,ξ,t+1

(
pt+1 − ρ

pθ,t+1

pθ,t
pt

)]
E (s| Fct )

+
[
pt+1 − pt + p̂t+1k

c
s,ξ,t+1

(
pt+1 − ρ

pθ,t+1

pθ,t
pt

)] [
s− E

(
s| F it

)]
+pθ,t+1

(
1 + p̂t+1k

c
s,ξ,t+1

)
εθ,t+1 + (pθ,t+1ρ− pθ,t) θt. (23)

To get rid of the term θt , we use the fact that ξt is adapted to F it and its definition to obtain

ξt = E
(
ξt| F it

)
⇔ θt = E

(
θt| F it

)
− pt
pθ,t

[
s− E

(
s| F it

)]
. (24)

Substituting equation (24) into (23) we can then define the process for ∆Pt+1 at t = 1, 2, ..., T − 2 as

Ct+1
(1×2n+2)

=


0[

pt+1 − pt + p̂t+1k
c
s,ξ,t+1

(
pt+1 − ρ

pθ,t+1
pθ,t

pt

)]′[
p̂t+1 − p̂t − p̂t+1k

c
s,ξ,t+1

(
pt+1 − ρ

pθ,t+1
pθ,t

pt

)]′
pθ,t+1ρ− pθ,t



′

(25)
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and

Dt+1
(1×2n+2)

=
[

0
(

1 + p̂t+1k
c
s,ξ,t+1

)(
pt+1 − ρ

pθ,t+1
pθ,t

pt

)
0(1×n)

(
1 + p̂t+1k

c
s,ξ,t+1

)
pθ,t+1

]
. (26)

At t = T − 1, the excess return becomes ∆PT = v − PT−1. Using the price function (5) and equation
(24), we obtain

∆PT = v − p̂T−1E
(
s| FcT−1

)
− pT−1s− pθ,T−1θT−1

= E
(
v| F iT−1

)
− pT−1E

(
s| F iT−1

)
− p̂T−1E

(
s| FcT−1

)
− pθ,T−1E

(
θT−1| F iT−1

)
+v − E

(
v| F iT−1

)
. (27)

To write ∆PT as a function of ψT−1 and ε∆,T , we need to get rid of the first E
(
v| F iT−1

)
term. To that

end, assume for now that the vector of signals s is observable. Equation (3) defines s as a vector of Gaussian
signals for v. Therefore, we can employ the linear Gaussian filter of Lemma 9 to find E (v| s). For that, we
make the substitutions

x = v, y = s, A = 1, Σx = 0, B = 1(n×1), Σy = Σs.

Let K̂ be determined according to Lemma 9 for the unobservable and observations processes defined above.
Then,

E (v| s) = E (v| F0) + K̂ [s− E (s| F0)] = K̂s, (28)

since E (s| F0) = E (v| F0) = 0. Taking expectations conditional on F iT−1 and using the law of iterated
expectations, we obtain

E
(
v| F iT−1

)
= K̂E

(
s| F iT−1

)
. (29)

Substituting equation (29) into (27), we obtain

CT
(1×2n+2)

=
[

0 K̂ − pT−1 −p̂T−1 −pθ,T−1

]
, DT

(1×2n+2)
=
[

1 0(1×n) 0(1×n) 0
]
. (30)

Finally, Σ∆,t+1 is given by

Σ∆,t+1
(2n+2×2n+2)

=


V ar

(
v| F it

)
Cov

(
v, s| F it

)
0(1×n) 0

Cov
(
s, v| F it

)
V ar

(
s| F it

)
0(n×n) 0(n×1)

0(n×1) 0(n×n) Σs̃,t+1 0(n×1)

0 0(1×n) 0(1×n) σ2
θ

 (31)

where V ar
(
s| F it

)
and V ar

(
v| F it

)
are determined from (15).

A.3 Proof of Lemma 4

Based on the optimized expected utility from the static problem, I make the guess that the value function
has the form

J
(
W i
t ,ψt; t

)
= −e−αW

i
t− 1

2ψ
′
tHtψt . (32)
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Using equations (9) and (10), the expected value of the value function becomes

E
[
J
(
W i
t +Xi

t∆Pt+1,ψt+1; t+ 1
)∣∣F it ]

= E
(
−e−αW

i
t−αX

i
t∆Pt+1− 1

2ψ
′
t+1Ht+1ψt+1

∣∣∣F it)
= E

(
−e−αW

i
t−αX

i
t(Ct+1ψt+Dt+1ε∆,t+1)− 1

2 (Ft+1ψt+Gt+1ε∆,t+1)′Ht+1(Ft+1ψt+Gt+1ε∆,t+1)
∣∣∣F it)

= E
(
e−αX

i
tCt+1ψt−αX

i
tDt+1ε∆,t+1−ψ′tF

′
t+1Ht+1Gt+1ε∆,t+1− 1

2ε
′
∆,t+1G

′
t+1Ht+1Gt+1ε∆,t+1

∣∣∣F it)
×
(
−e−αW

i
t− 1

2ψ
′
tF
′
t+1Ht+1Ft+1ψt

)
.

To compute the expectation above I will use the Lemma 10 with the following substitutions: ε = ε∆,t+1,
Σ = Σ∆,t+1, a = −αXi

tCt+1ψt, b = −αD′t+1X
i
t −G′t+1H

′
t+1Ft+1ψt and c = − 1

2G
′
t+1Ht+1Gt+1.

Before applying Lemma 10, we need to verify that c is symmetric and Σ−1−2c is positive definite. As we
will determine below, Ht+1 is symmetric, which implies that c is symmetric as well. Since Σ is by definition
positive definite, a sufficient condition for Σ−1 − 2c to be positive definite is that c is semi-definite negative.
Given the form of the value function (32), the submatrix of Ht+1 obtained by removing the first row and
column has to be positive semi-definite, because the subvector of state variables ψt obtained by removing the
first row can assume any value in Rn+1. Otherwise, the expected utility from the optimal trading strategy
would be smaller than the expected utility of not trading the risky asset, which is a contradiction. Since
G′t+1Σ∆,t+1Gt+1 is the covariance matrix of ψt+1|F it , which is positive semi-definite (positive definite if we
exclude the first row and column associated to the constant), it then follows that G′t+1Ht+1Gt+1 is also
positive semi-definite, which implies that Σ−1 − 2c is positive definite.

Applying Lemma 10 we then obtain

E
[
J
(
W i
t +Xi

t∆Pt+1,ψt+1; t+ 1
)∣∣F it ]

= −
(
|Σ∆,t+1|

∣∣Ξ−1
t+1
∣∣)− 1

2 e−αW
i
t− 1

2ψ
′
tF
′
t+1Ht+1Ft+1ψt

×e−αX
i
tCt+1ψt+ 1

2 (αD′t+1X
i
t+G

′
t+1H

′
t+1Ft+1ψt)′Ξt+1(αD′t+1X

i
t+G

′
t+1H

′
t+1Ft+1ψt)

with
Ξt+1

(2n+2×2n+2)
≡
(

Σ−1
∆,t+1 +G′t+1Ht+1Gt+1

)−1
. (33)

The first order condition for the optimality of Xi
t is

−αCt+1ψt + α2Dt+1Ξt+1D
′
t+1X

i
t + αDt+1Ξt+1G

′
t+1H

′
t+1Ft+1ψt = 0⇔ Xi

t = 1
α
Qtψt

with

Qt
(1×2n+2)

≡
(
Dt+1Ξt+1D

′
t+1
)−1 (

Ct+1 −Dt+1Ξt+1G
′
t+1H

′
t+1Ft+1

)
. (34)

Substituting the optimal Xi
t into the Bellman equation, we have

−e−αW
i
t− 1

2ψ
′
tHtψt = −

(
|Σ∆,t+1|

∣∣Ξ−1
t+1
∣∣)− 1

2 e−αW
i
t−ψ

′
tQ
′
tCt+1ψt− 1

2ψ
′
tF
′
t+1Ht+1Ft+1ψt

×e
1
2ψ
′
t(D′t+1Qt+G

′
t+1H

′
t+1Ft+1)′Ξt+1(D′t+1Qt+G

′
t+1H

′
t+1Ft+1)ψt .
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Since the vector of state variables ψt includes a constant, we can write

(
|Σ∆,t+1|

∣∣Ξ−1
t+1
∣∣)− 1

2 = e−
1
2ψ
′
tMt+1ψ,

Mt+1
(2n+2×2n+2)

≡

[
ln
∣∣∣Σ∆,t+1

Ξt+1

∣∣∣ 0(1×2n+1)

0(2n+1,1) 0(2n+1,2n+1)

]
, (35)

which proves that the initial guess for the value function is correct and allows us to determine Ht. However,
Ht is not uniquely defined, since ψ′tQ′tCt+1ψt = ψ′tC

′
t+1Qtψt while Q′tCt+1 6= C ′t+1Qt. I will consider the

symmetric version of Ht, which is obtained by substituting ψ′tQ′tCt+1ψt for 1
2ψ
′
tQ
′
tCt+1ψt + 1

2ψ
′
tC
′
t+1Qtψt.

Using (34), the symmetric version of Ht is, after simplification, defined as

Ht
(2n+2×2n+2)

= Q′tDt+1Ξt+1D
′
t+1Qt − F ′t+1Ht+1Gt+1Ξt+1G

′
t+1H

′
t+1Ft+1

+F ′t+1Ht+1Ft+1 +Mt+1. (36)

Ht can be found by backward induction, starting at HT = 0(2n+2,2n+2), which is given by the boundary
condition on the value function.

A.4 Proof of Lemma 5

Let the (2n+ 2)-dimensional row vector Qt be partitioned as follows,

Qt ≡
[

q1,t
(1×1)

qis,t
(1×n)

qcs,t
(1×n)

qiθ,t
(1×1)

]
.

From the definitions of Qt, Ct, Gt and Ft, one can easily check that q1,t = 0, t = 1, 2, ..., T−1. Using equation
(12) and the definition of ψt from Lemma 3, the market clearing condition can be written as

1
α

ˆ
i

[
qis,tE

(
s| F it

)
+ qcs,tE (s| Fct ) + qiθ,tE

(
θt| F it

)]
= θt

⇔ qis,t

ˆ
i

E
(
s| F it

)
+ qcs,tE (s| Fct ) + qiθ,t

ˆ
i

E
(
θt| F it

)
− αθt = 0 (37)

where the equivalence follows from E (s| Fct ) being the same for every investor and from the unit mass of
investors. Rearranging equation (24), which uses the fact that ξt is adapted to F it , we have

E
(
θt| F it

)
= θt + pt

pθ,t

[
s− E

(
s| F it

)]
. (38)

Substituting equation (38) into (37), we get(
qis,t −

qiθ,t
pθ,t

pt

) ˆ
i

E
(
s| F it

)
+ qcs,tE (s| Fct ) +

qiθ,t
pθ,t

pts+
(
qiθ,t − α

)
θt = 0 (39)

Noticing that F it =
{
Fct , s̃iτ : τ = 1, ..., t

}
, where s̃it is a Gaussian vector, we can use Lemma 11 on

conditional normal distributions to compute
´
i
E
(
s| F it

)
. Let S̃it denote the stack of s̃it from date 1 to t, i.e.

39



S̃
i

t
(tn×1)

≡
[
s̃
′i
1 · · · s̃

′i
t

]′
, and Σs̃,t be given by

Σs̃,t
(tn×tn)

=


Σs̃,1 0(n×n) · · · 0(n×n)

0(n×n) Σs̃,2 · · · 0(n×n)
...

...
. . .

...
0(n×n) 0(n×n) · · · Σs̃,t

 .

Then we have that[
s

S̃
i

t

]∣∣∣∣∣Fct ∼ N
([

E (s| Fct )
1(t×1) ⊗ E (s| Fct )

]
,

[
V ar (s| Fct ) 1(1×t) ⊗ V ar (s| Fct )

1(t×1) ⊗ V ar (s| Fct ) 1(t×t) ⊗ V ar (s| Fct ) + Σi
s,t

])
,

where ⊗ denotes the Kronecker product of matrices. Applying Lemma 11, we obtain

E
(
s| F it

)
= E (s| Fct ) + Γt

[
S̃
i

t − 1(t×1) ⊗ E (s| Fct )
]

where

Γt
(n×tn)

≡
[
1(1×t) ⊗ V ar (s| Fct )

] [
1(t×t) ⊗ V ar (s| Fct ) + Σs̃,t

]−1
. (40)

And integrating over i, we obtain
ˆ
i

E
(
s| F it

)
= E (s| Fct ) + Γt

{
1(t×1) ⊗ [s− E (s| Fct )]

}
= Γ̂ts+

(
In − Γ̂t

)
E (s| Fct ) . (41)

where
Γ̂t

(n×n)
≡ Γt

(
1(t×1) ⊗ In

)
. (42)

Substituting equation (41) into (39) the market clearing condition becomes[(
qis,t −

qiθ,t
pθ,t

pt

)
Γ̂t +

qiθ,t
pθ,t

pt

]
s+

[
qcs,t +

(
qis,t −

qiθ,t
pθ,t

pt

)(
In − Γ̂t

)]
E (s| Fct ) +

(
qiθ,t − α

)
θt = 0.

For the market condition to hold for all possible realizations of s, E (s| Fct ) and θt it must be the case
that their coefficients are all equal to zero. This condition is satisfied when

qiθ,t = α (43)

qis,t = −qcs,t = α

pθ,t
pt

(
In − Γ̂−1

t

)
(44)

which concludes the proof of the first part of the lemma.
To prove the second part of the lemma, I start by determining the date T − 1 price coefficients. Plugging

expressions (30), (31) and HT = 0(2n+2,2n+2) into (34), we obtain

qis,T−1 =
K̂ − pT−1

V ar
(
v| F iT−1

) , qcs,T−1 = −
p̂T−1

V ar
(
v| F iT−1

) , qiθ,T−1 = − pθ,T−1

V ar
(
v| F iT−1

) ,
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noting that QT−1 = V ar
(
v| F iT−1

)−1
CT . From the market clearing conditions (43) and (44), we then obtain

that

pT−1 = K̂Γ̂T−1 (45)

p̂T−1 = K̂
(
In − Γ̂T−1

)
pθ,T−1 = −αV ar

(
v| F iT−1

)
(46)

and so pT−1 + p̂T−1 = K̂. This implies that the (j + 1)-th column of CT and its (j + n+ 1)-th column are
symmetric, for j = 1, ..., n. Knowing that QT−1 = V ar

(
v| F iT−1

)−1
CT and recalling thatHT = 0(2n+2,2n+2),

we can then determine HT−1 from (36) as

HT−1 = 1
V ar

(
v| F iT−1

)C ′TCT ,
and it follows that the (j + 1)-th column and row of HT−1 and its (j + n+ 1)-th column and row are
symmetric, j = 1, ..., n. We can then write

HT−1 = J ′H̃T−1J, J
′ =


1 0(1,n) 0

0(n,1) In 0(n,1)

0(n,1) −In 0(n,1)

0 0(1,n) 1

 (47)

with H̃T−1 being composed by the first n+ 1 and the last columns and rows of HT−1. Now, substituting the
expression above into expression (34) for QT−2, and inverting for CT−1, we obtain

CT−1 = DT−1

(
Σ−1

∆,T−1 +G′T−1HT−1GT−1

)−1
D′T−1QT−2

+DT−1

(
Σ−1

∆,T−1 +G′T−1HT−1GT−1

)−1
G′T−1J

′H̃T−1JFT−1.

The market clearing condition implies that (j + 1)-th column of QT−2 and its (j + n+ 1)-th column are
symmetric, j = 1, ..., n. We can verify that the same holds for the second term due to JFT−1, since

JFT−1 =
1 0(1,n) 0(1,n) 0

0(n,1) In − kcs,ξ,T−1

(
pT−1 − ρ

pθ,T−1
pθ,T−2

pT−2

)
−In + kcs,ξ,T−1

(
pT−1 − ρ

pθ,T−1
pθ,T−2

pT−2

)
0(n,1)

0 0(1,n) 0(1,n) ρ

 ,
and so the CT−1 also shares this property. Therefore, from expression (25) for CT−1 we obtain

pT−1 − pT−2 + p̂T−1 − p̂T−2 = 0⇔ pT−2 + p̂T−2 = K̂.

Next, substituting HT−1 = J ′H̃T−1J into the expression for HT−2 we obtain

HT−2 = Q′T−2DT−1ΞT−1D
′
T−1QT−2 − F ′T−1J

′H̃T−1JGT−1ΞT−1G
′
T−1J

′H̃T−1JFT−1

+F ′T−1J
′H̃T−1JFT−1 +MT−1

and we can see that all terms share the property that their (j + 1)-th column and row is the symmetric of
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their (j + n+ 1)-th column and row, j = 1, ..., n. Therefore, we can write HT−2 = J ′H̃T−2J . Using the same
steps as above for every date until t = 1 we can then show that pt + p̂t = K̂, t = 1, ..., T − 1, which proves
the second part of the lemma.

A.5 Proof of Theorems 7 and 8

Parts (i) to (iv) of Theorem 7 are proved in Appendix C.4 and part (v) is immediate. Parts (i) and (ii) of
Theorem 8 are proved in Appendix C.5 and the proof of parts (iii) to (v) is similar to those of Theorem 7
and so are omitted.

B Numerical Algorithm to Solve the Equilibrium
Let p denote the (T − 1)× (2n+ 1) vector of parameters of the price function. I solve for the p that solves
the fixed point problem associated to the T − 1 market clearing conditions. For that, I recast the set of
market clearing conditions as a function p = f

(
p
)
.

We can rewrite Ct+1 as
Ct+1 ≡ Ĉt+1 −

[
0 pt p̂t pθ,t

]
.

As a result, the market clearing condition at date t can be rewritten as[
0 pt p̂t pθ,t

]
= Ĉt+1 −Dt+1Ξt+1G

′
t+1H

′
t+1Ft+1

−Dt+1Ξt+1D
′
t+1

[
α α

pθ,t
pt

(
In − Γ̂−1

t

)
− α
pθ,t
pt

(
In − Γ̂−1

t

) ]
.

The T − 1 market clearing conditions then give us the p = f
(
p
)
fixed point problem for p. The algorithm I

use to solve the fixed point problem is the following:

1. Make and initial guess p0, and choose the damping factor δ > 0;

2. Obtain the j-th estimate of p as pj = pj−1 (1− δ) + δf
(
pj−1) and compute the norm

∥∥pj−1−
f
(
pj−1)∥∥;

3. Whenever
∥∥pj−1 − f

(
pj−1)∥∥ ≥ ∥∥pj−2 − f

(
pj−2)∥∥ decrease the damping factor and recompute the

i-th estimate with the new damping factor, until
∥∥pj−1 − f

(
pj−1)∥∥ <

∥∥pj−2 − f
(
pj−2)∥∥. If the

damping factor becomes smaller than a threshold value, abort the algorithm with no solution found;

4. Repeat steps 2 and 3 until
∥∥pj−1 − f

(
pj−1)∥∥ is smaller than some threshold value, and take pj as the

solution.

C 3-period example
Here I will solve in closed form a 3-period version of the model without residual uncertainty. This version
of the model can be solved by direct application of Theorem 1 and Lemmas 2 to 5. However, it is useful to
introduce some modifications to the general model. The objective of these modifications is to simplify the
procedure for the specific setting under analysis.

The assumption of no residual uncertainty implies that s = v. This originates redundancies that can be
eliminated. Specifically, I drop the conditional beliefs on v (Lemma 2) and the term v − E

(
v| F it

)
in ε∆,t+1

(Lemma 3). Moreover, since s = v, it is straightforward to see that K̂ = 1. Using equation (14), we then
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have that p̂t = 1− pt. To simplify the notation, I use this expression to substitute for p̂t everywhere. I also
redefine ξt ≡ s+ pθ,t

pt
θt. The price function (5) then becomes

Pt = (1− pt)E (s| Fct ) + ptξt.

Finally, using (14) on expressions (25) and (30), it is immediate that ∆Pt+1 depends on E
(
s| F it

)
and

E (s| Fct ) only through E
(
s| F it

)
− E (s| Fct ). This allows me to redefine

ψt ≡
[

1 E
(
s| F it

)
− E (s| Fct ) E

(
θt| F it

) ]′
,

decreasing the dimensionality of Ct+1, Ft+1, Gt+1, Qt+1 and Ht+1.
As stated in Corollary 6, in the general case the price function coefficients for all dates are determined

simultaneously by solving a system of nonlinear equations. If the conditional beliefs are given, one can solve
the price function coefficients backwards from t = T − 1. However, conditional beliefs are solved forward
from t = 0 and require information about those coefficients. Specifically time t conditional beliefs require
the knowledge of the ratio

{
pθ,τ
pτ

}
τ≤t

. Without residual uncertainty, however, we can determine the value of
pθ,t
pt
∀t beforehand. Adapting from Corollary 2 of He and Wang (1995) to our notation, T = 3 and defining

σ2
s̃,2 ≡

β
1−βσ

2
s̃,1, 0 ≤ β ≤ 1, we have

pθ,1
p1

= −ασ2
s̃,1,

pθ,2
p2

= −αβσ2
s̃,1. (48)

Thus, we can start by solving for the beliefs forward from t = 0, and then solve for the price function
coefficients backwards from t = 2 separately.

C.1 Conditional Beliefs

Beliefs on s and θt conditional on F it are obtained by applying Lemma 9 to

xt =
[
s

θt

]
, yt =

[
ξt

s̃it

]
, At =

[
1 0
0 ρ

]
, Σx,t =

[
0 0
0 σ2

θ

]
, Bt =

[
1 pθ,t

pt

1 0

]
, Σy,t =

[
0 0
0 σ2

s̃,t

]
,

with prior beliefs given by E (x0| F0) =
[

0
0

]
and V ar (x0| F0) =

[
σ2
v 0

0 0

]
. Applying Lemma 9 and using

(48), it is straightforward to obtain

E
(
s| F i1

)
=

1
α2σ4

s̃,1σ
2
θ

ξ1 + 1
σ2
s̃,1
s̃i1

1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

+ 1
σ2
s̃,1

, E
(
s| F i2

)
=

1
α2σ4

s̃,1σ
2
θ

ξ1 + 1
σ2
s̃,1
s̃i1 + 1−βρ

α2β2σ4
s̃,1σ

2
θ

(ξ2 − βρξ1) + 1
β

1−β σ
2
s̃,1
s̃i2

1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

+ 1
σ2
s̃,1

+ (1−βρ)2

α2β2σ4
s̃,1σ

2
θ

+ 1
β

1−β σ
2
s̃,1

,

(49)

E
(
θ1| F i1

)
=
σ2
v s̃
i
1 −

(
σ2
s̃,1 + σ2

v

)
ξ1

ασ4
s̃,1σ

2
v

V i1 , (50)

V i1 ≡ V ar
(
s| F i1

)
= 1

1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

+ 1
σ2
s̃,1

, V i2 ≡ V ar
(
s| F i2

)
= 1

1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

+ 1
σ2
s̃,1

+ (1−βρ)2

α2β2σ4
s̃,1σ

2
θ

+ 1
β

1−β σ
2
s̃,1

,

(51)
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K1 =

 1
α2σ4

s̃,1σ
2
θ

1
σ2
s̃,1

− 1
ασ2

s̃,1

(
1
V i1
− 1

α2σ4
s̃,1σ

2
θ

)
1

ασ4
s̃,1

V i1 , K2 =

 1−βρ
α2β2σ4

s̃,1σ
2
θ

1
β

1−β σ
2
s̃,1

− 1
αβσ2

s̃,1

(
1
V i2
− 1−βρ

α2β2σ4
s̃,1σ

2
θ

)
1

α β2
1−β σ

4
s̃,1

V i2 .
Beliefs conditional on Fct are obtained in the same way, by removing the second row of yt and Bt and the
second row and column of Σy,t, yielding

E (s| Fc1) =
1

α2σ4
s̃,1σ

2
θ

ξ1

1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

, E (s| Fc2) =
1

α2σ4
s̃,1σ

2
θ

ξ1 + 1−βρ
α2β2σ4

s̃,1σ
2
θ

(ξ2 − βρξ1)
1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

+ (1−βρ)2

α2β2σ4
s̃,1σ

2
θ

, (52)

V c1 ≡ V ar (s| Fc1) = 1
1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

, V c2 ≡ V ar (s| Fc2) = 1
1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

+ (1−βρ)2

α2β2σ4
s̃,1σ

2
θ

,

Kc
1 =

 1
α2σ4

s̃,1σ
2
θ

− 1
ασ2

s̃,1

(
1
V c1
− 1

α2σ4
s̃,1σ

2
θ

) V c1 , Kc
2 =

 1−βρ
α2β2σ4

s̃,1σ
2
θ

− 1
αβσ2

s̃,1

(
1
V c2
− 1−βρ

α2β2σ4
s̃,1σ

2
θ

) V c2 .
The following relations between V i1 , V i2 , V c1 and V c2 will be used to simplify expressions later on

1
V i2

= 1
V i1

+ (1− βρ)2

α2β2σ4
s̃,1σ

2
θ

+ 1
β

1−βσ
2
s̃,1
,

1
V c2

= 1
V c1

+ (1− βρ)2

α2β2σ4
s̃,1σ

2
θ

,
1
V i2

= 1
V c2

+ 1
βσ2

s̃,1
,

1
V i1

= 1
V c1

+ 1
σ2
s̃,1

(53)

C.2 Solving for p2 and pθ,2

From equations (40) and (42), and using 1
V i2

= 1
V c2

+ 1
βσ2

s̃,1
, we obtain Γ̂2 = V i2

βσ2
s̃,1

. Thus, from equations (45)
and (46), we can determine that

p2 = V i2
βσ2

s̃,1
, pθ,2 = −αV i2 .

Note that pθ,2
p2

= −αβσ2
s̃,1 as it was initially assumed.

C.3 Solving for p1 and pθ,1

Using equations (40), (42) and 1
V i1

= 1
V c1

+ 1
σ2
s̃,1

, we have that Γ̂1 = V i1
σ2
s̃,1

. Using (48), 1
V i1

= 1
V c1

+ 1
σ2
s̃,1

and Γ̂1

we can then write the market clearing condition (13) as

Q1 =
[

0 1
V c1

α
]
. (54)

Notice that, from (25), C2 can be written as C2 = Ĉ2 −
[

0 p1 pθ,1

]
, where Ĉ2 depends on date 1 price

function parameters only through the ratio pθ,1
p1

, whose value is known. Using equation (34) for Q1 and the
market clearing condition, p1 and pθ,1 are given by

[
p1 pθ,1

]
= −D2Ξ2D

′
2

[
1
V c1

α
]

+
(
Ĉ2 −D2Ξ2G

′
2H2F2

) 0 0
1 0
0 1

 . (55)

C2 is given by (25), with some changes to reflect the modifications introduced above: the modification of
ψt implies that third column disappears; and the redefinition of ξt (which is now the old value of ξt divided
by pt) implies that kcs,ξ,t+1 is divided by pt. Using (53) to simplify, we obtain C2 and Ĉ2 as
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C2 = Ĉ2 −
[

0 p1 pθ,1

]
, Ĉ2 =

[
0 1− V i2

V c1
−αV i2 ρ

]
. (56)

F2 is given by (20), with the following changes: the second row becomes the old second row minus the old
third row, and the third row and column disappear (due to the change in ψt); kcs,ξ,t+1 is divided by pt (due
to the redefinition of ξt). Using (53) to simplify, we get

F2 =

 1 0 0
0 V c2

V c1
0

0 0 ρ

 . (57)

G2 is given by (21), with the following changes: the first column disappears (to reflect the change in ε∆,t);
the second row becomes the difference between the old second and third rows, and the third row disappears
(due to the change in ψt); and kcs,ξ,t+1 and kcθ,ξ,t+1 are divided by pt (due to the redefinition of ξt). After
simplification, using (48) and (53), we obtain

G2 =


0 0 0

V c2
V c1
− V i2

V i1

V i2 (1−β)
βσ2

s̃,1
− (V i2−V c2 )(1−βρ)

αβσ2
s̃,1σ

2
θ

1
α

(
V i2
V c2 V

i
1
− 1

V c1
− 1−ρ

σ2
s̃,1

)
V i2 (1−β)
αβ2σ4

s̃,1
1− V i2 (1−βρ)

α2β2σ4
s̃,1σ

2
θ

 .
By definition, H3 = 0(3,3). As a result, Ξ3 = Σ∆,3, M3 = 0(3,3), D3Ξ3D

′
3 = V i2 and we obtain, from (36),

H2 = Q′2Q2V
i
2 . Using the market clearing condition (13) and simplifying we get Q2 =

[
0 1

V c2
α
]
, and so

H2 = V i2

 0
1
V c2

α


 0

1
V c2

α


′

. (58)

Tedious algebra, using (53) to simplify expressions, shows that

G′2H2G2 = V i2


− 1−ρ
σ2
s̃.1

1−β
βσ2

s̃,1

α



− 1−ρ
σ2
s̃.1

1−β
βσ2

s̃,1

α


′

, G′2H2F2 = V i2


− 1−ρ
σ2
s̃.1

1−β
βσ2

s̃,1

α


 0

1
V c1

αρ


′

. (59)

From (31), removing the first row and column, we obtain

Σ∆,2 =

 V i1 0 0
0 β

1−βσ
2
s̃,1 0

0 0 σ2
θ

 .
Because G′2H2G2 is the outer product of a vector, we can determine Ξ2 ≡

(
Σ−1

∆,2 +G′2H2G2

)−1
without

inverting matrices, obtaining

Ξ2 = Σ∆,2 −
V i2

1 + V i2

(
V i1 (1−ρ)2

σ4
s̃,1

+ 1−β
βσ2

s̃,1
+ α2σ2

θ

)
 −

(1−ρ)V i1
σ2
s̃.1

1
ασ2

θ


 −

(1−ρ)V i1
σ2
s̃.1

1
ασ2

θ


′

. (60)
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D2 is given by (26), with the first column removed and, once again, kcs,ξ,t+1 is divided by pt. After simplifi-
cation, we get

D2 = V i2

(
1

βσ2
s̃,1

+ 1− βρ
α2β2σ4

s̃,1σ
2
θ

)[
1− βρ 0 −αβσ2

s̃,1

]
.

We can now obtain

D2Ξ2D
′
2 = −

(
V i2
)2( 1

βσ2
s̃,1

+ 1− βρ
α2β2σ4

s̃,1σ
2
θ

)2

×

×

V i1 (1− βρ)2 + α2β2σ4
s̃,1σ

2
θ −

V i2

(
α2βσ2

s̃,1σ
2
θ + V i1 (1−ρ)(1−βρ)

σ2
s̃,1

)2

1 + V i2

(
V i1 (1−ρ)2

σ4
s̃,1

+ 1−β
βσ2

s̃,1
+ α2σ2

θ

)
 (61)

and

D2Ξ2G
′
2H2F2 = −

(
V i2
)2 ( 1

βσ2
s̃,1

+ 1−βρ
α2β2σ4

s̃,1σ
2
θ

)(
α2βσ2

s̃,1σ
2
θ + V i1 (1−ρ)(1−βρ)

σ2
s̃,1

)
1 + V i2

(
V i1 (1−ρ)2

σ4
s̃,1

+ 1−β
βσ2

s̃,1
+ α2σ2

θ

) [
0 1

V c1
αρ

]
.

At this point we have everything needed to obtain p1 and pθ,1 from (55). However, the expressions for
the general case are too complex and difficult to work with. For that reason, I consider two special cases.
In the first, information at t = 2 is exclusively endogenous (β → 1, 0 ≤ ρ < 1), whereas in the second it is
exclusively exogenous (0 ≤ β < 1, ρ = 1).

C.4 Model with Endogenous Information

Taking the limits of D2Ξ2G
′
2H2F2, and D2Ξ2D

′
2 as β → 1, and substituting into (55), we obtain the date 1

price coefficients as

pθ,1 = −αV i2

(
1 + 1−ρ

σ2
s̃,1α

2σ2
θ

)2
+ ρ

α2σ2
θ

(
1
V i1
− 1−ρ

σ2
s̃,1

)
1 + 1

V i1α
2σ2
θ

, p1 = V i2
σ2
s̃,1

(
1 + 1−ρ

σ2
s̃,1α

2σ2
θ

)2
+ ρ

α2σ2
θ

(
1
V i1
− 1−ρ

σ2
s̃,1

)
1 + 1

V i1α
2σ2
θ

.

p1 ≥ 0 and pθ,1 ≤ 0 if 1
V i1
− 1−ρ

σ2
s̃,1
≥ 0 ⇔ V i1 (1− ρ) ≤ σ2

s̃,1 which is always the case since, by definition,
V i1 ≤ σ2

s̃,1.

C.4.1 Average, Announcement Date Reaction and Drift in Expectations

Averaging over net supply shocks and interpretation errors, we have ξ1 = ξ2 = s̃i1 = s̃i2 = s. In this scenario,
expectations (49), (52) and (50) become

Eθ,i
[
E
(
s| F i1

)]
=
(

1− V i1
σ2
v

)
s, Eθ,i

[
E
(
s| F i2

)]
=
(

1− V i2
σ2
v

)
s, (62)

Eθ [E (s| Fc1)] =
(

1− V c1
σ2
v

)
s, Eθ [E (s| Fc2)] =

(
1− V c2

σ2
v

)
s, (63)

Eθ,i
[
E
(
θ1| F i1

)]
= − V i1

ασ2
s̃,1σ

2
v

s. (64)

Since s = v, the conditional expectations of s and v are the same.
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Notice that, on average, the announcement date reaction of the expectation of v (or s) conditional on
F i,

Eθ,i
[
E
(
v| F i1

)
− E (v| F0)

]
=
(

1− V i1
σ2
v

)
s (65)

has the same sign of s as long as

V i1
σ2
v

< 1⇔ σ2
v

(
1

α2σ4
s̃,1σ

2
θ

+ 1
σ2
s̃,1

)
> 0

Therefore, expectations react to the announcement if and only if: (i) the liquidation value is not known
before the announcement (σ2

v > 0); and (ii) the announcement is informative (σ2
s̃,1 <∞).

In turn, the drift in conditional expectations,

Eθ,i
[
E
(
v| F i2

)
− E

(
v| F i1

)]
= V i1 − V i2

σ2
v

s, (66)

has the same sign of s if and only if σ2
v <∞ and

V i2 < V i1 ⇔
1

1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

+ 1
σ2
s̃,1

+ (1−ρ)2

α2σ4
s̃,1σ

2
θ

<
1

1
σ2
v

+ 1
α2σ4

s̃,1σ
2
θ

+ 1
σ2
s̃,1

.

The latter is the case as long as: (i) the liquidation value is not known by the announcement (σ2
v > 0,

α2σ2
θ > 0 and σ2

s̃,1 > 0); (ii) the date 1 announcement is informative (σ2
s̃,1 < ∞); (iii) there is endogenous

information available at date 2 (ρ < 1 and α2σ2
θ <∞).

C.4.2 Average, Announcement Date Reaction and Drift in Prices

Given the common prior E (v| Fo) = 0 and initial net supply θ0 = 0, the date 0 price equals the prior on the
liquidation value, that is, P0 = 0.

Averaging over supply shocks and substituting for Eθ [E (s| Fc2)] from (63), the average price at date 1
and 2 are given by

Eθ (P1) =
[
1− (1− p1) V

c
1
σ2
v

]
s, Eθ (P2) =

[
1− (1− p2) V

c
2
σ2
v

]
s. (67)

Trivially, the price reaction to the announcement is

Eθ (∆P1) = Eθ (P1) =
[
1− (1− p1) V

c
1
σ2
v

]
s. (68)

As we saw above, p1 ≥ 0 and, by definition, V c1 ≤ σ2
v . Therefore, the sign of the price reaction to the

announcement is the same as that of s unless p1 = 0 ∧ V c1
σ2
v

= 1. The first equality equates to

p1 = 0⇔ V i2
σ2
s̃,1

= 0⇔ 1
σ2
s̃,1
σ2
v

+ 1
α2σ2

s̃,1σ
2
θ

+ 1 + (1−ρ)2

α2σ2
s̃,1σ

2
θ

= 0,

which holds if any of the following is true: σ2
v = 0, α2σ2

θ = 0 or σ2
s̃,1 =∞. The second equality becomes

V c1
σ2
v

= 1⇔ σ2
v

α2σ4
s̃,1σ

2
θ

= 0
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which holds if any of the following is true: σ2
v = 0, σ2

s̃,1 =∞ or α2σ2
θ =∞. Consequently, the price reaction

to the announcement has the same sign of s if and only if: (i) the liquidation value is not known before the
announcement (σ2

v > 0); and (ii) the announcement is informative (σ2
s̃,1 <∞).

Substituting for p1 and p2 and taking the limit as β → 1, the average price drift is

Eθ (∆P2) =
V i2
(
1− ρ+ α2σ2

s̃,1σ
2
θ

)
σ2
v + α2σ2

s̃,1σ
2
θ

(
σ2
v + σ2

s̃,1 + α2σ2
s̃,1σ

2
vσ

2
θ

) (1− ρ) s. (69)

It is easy to see that when there is no exogenous information at date 2, on average, prices drift on the
same direction of s if and only if: there is exogenous information at date 1 and it is interpreted differentially
(0 < σ2

s̃,1 <∞); endogenous information is produced at date 2 (ρ < 1 and α2σ2
θ <∞); and not all uncertainty

is resolved by date 1 (σ2
v > 0 and α2σ2

θ > 0).

C.4.3 Average Expectation of Price Changes and Average Expected Demand

The date 1 expectation of future price changes ∆P2 and ∆P3 conditional on F i1 are easily obtained from
equations (9) and (10) as E

(
∆P2| F i1

)
= C2ψ1 and E

(
∆P3| F i1

)
= C3F2ψ1. Averaging over supply shocks

and interpretation errors, using expressions (62), (63) and (64), we get

Eθ,i (ψ1) ≡

 1
E
(
s| F i1

)
− E (s| Fc1)

E
(
θ1| F i1

)
 =


1

V c1 −V
i
1

σ2
v

s

− V i1
ασ2

s̃,1σ
2
v
s

 .
C3 is given by (30) without the third column, that is, CT =

[
0 1− p2 −pθ,2

]
. Substituting for C2 and

F2 determined above (equations (56) and (57) respectively), taking the limit as β → 1 and simplifying, we
obtain

Eθ,i
[
E
(

∆P2| F i1
)]

= −
V i2V

i
1
(
1− ρ+ α2σ2

s̃,1σ
2
θ

)
α2σ2

θ

σ2
v + α2σ2

θσ
2
s̃,1
(
σ2
v + σ2

s̃,1 + α2σ2
s̃,1σ

2
vσ

2
θ

) (1− ρ) s

Eθ,i
[
E
(

∆P3| F i1
)]

= V i2V
i
1

σ2
s̃,1σ

2
v

(1− ρ) s

Eθ,i
[
E
(

∆P2 + ∆P3| F i1
)]

=
V i2V

i
1
[
σ2
v + α2σ2

θσ
2
s̃,1
(
σ2
s̃,1 + ρσ2

v

)]
σ2
s̃,1σ

2
v

[
σ2
v + α2σ2

θσ
2
s̃,1
(
σ2
v + σ2

s̃,1 + α2σ2
θσ

2
s̃,1σ

2
v

)] (1− ρ) s.

It is easy to see that, on average, the price is expected to move in the opposite (same) direction of s from
date 1 to date 2 (date 2 to date 3 and date 1 to date 3) in the same circumstances that, on average, prices
drift.

The average date 1 expectation of the date 2 demand is obtained from equations (10) and (12) as

Eθ,i
[
E
(
Xi

2
∣∣F i1)] = 1

α
Q2F2Eθ,i (ψ1) = V i1 (1− ρ)

ασ2
s̃,1σ

2
v

s

which has the same sign of s in the same circumstances that, on average, prices drift.
Conditioning on s̃i1 only, it is easy to verify that, in the limit case of β → 1:

E
(
s| s̃i1

)
= E

(
ξ1| s̃i1

)
= E

(
ξ2| s̃i1

)
=

1
σ2
s̃,1
s̃i1

1
σ2
v

+ 1
σ2
s̃,1

, E
(
θ1| s̃i1

)
= E

(
θ2| s̃i1

)
= 0,

48



E
[
E (s| Fc1)| s̃i1

]
= σ4

v s̃
i
1(

σ2
s̃,1 + σ2

v

) (
σ2
v + α2σ4

s̃,1σ
2
θ

) , E [E (s| Fc2)| s̃i1
]

=
[
1 +

(
1− ρ2)]σ4

v s̃
i
1(

σ2
s̃,1 + σ2

v

) (
[1 + (1− ρ2)]σ2

v + α2σ4
s̃,1σ

2
θ

) .
The expected price changes conditional on s̃i1 are then given by

E
(

∆P2| s̃i1
)

= (1− p2)E
[
E (s| Fc2)| s̃i1

]
− (1− p1)E

[
E (s| Fc1)| s̃i1

]
+ (p2 − p1)E

(
s| s̃i1

)
=

V i2
(
1− ρ+ α2σ2

s̃,1σ
2
θ

)
σ2
v + α2σ2

s̃,1σ
2
θ

(
σ2
v + σ2

s̃,1 + α2σ2
s̃,1σ

2
vσ

2
θ

) σ2
v

σ2
v + σ2

s̃,1
(1− ρ) s̃i1

E
(

∆P3| s̃i1
)

= (1− p2)
{
E
(
s| s̃i1

)
− E

[
E (s| Fc2)| s̃i1

]}
= V i2

σ2
v

σ2
v

σ2
v + σ2

s̃,1
s̃i1.

Since, Ei
(
s̃i1
)

= s, on average when conditioning only on s̃i1, investors expect prices to drift in the same
direction of s.

C.5 Model with Exogenous Information

Following the same steps as in the previous case but setting ρ = 1, we obtain the date 1 price coefficients

p1 = V i1
σ2
s̃,1
, pθ,1 = −αV i1 .

The drift in average expectations and prices (using equation (67)) is given by

Eθ,i
[
E
(
v| F i1

)
− E (v| F0)

]
= Eθ [E (∆P1| s)] =

(
1− V i1

σ2
v

)
s

Eθ,i
[
E
(
v| F i2

)
− E

(
v| F i1

)]
= Eθ [E (∆P2| s)] = V i1 − V i2

σ2
v

s

Eθ,i
[
v − E

(
v| F i2

)]
= Eθ [E (∆P3| s)] = V i2

σ2
v

s

It is straightforward to determine that the reaction to the announcement and drifts have the same sign as
s in the same conditions we determined for the model with endogenous information. The only difference is
that now drifts occur if there is additional exogenous information at date 2 (β < 1) instead of additional
endogenous information (ρ < 1 and α2σ2

θ <∞).
The average date 1 expectation of future price changes is

Eθ,i
[
E
(

∆P2| F i1
)]

= Eθ,i
[
E
(

∆P3| F i1
)]

= 0

and the average date 1 expectation of date 2 demand is

Eθ,i
[
E
(
Xi

2
∣∣F i1)] = 0.

Conditioning only on s̃i1, the expected price change is

E
(

∆P2| s̃i1
)

= V i1 − V i2
σ2
v + σ2

s̃,1
s̃i1, E

(
∆P3| s̃i1

)
= V i2
σ2
v + σ2

s̃,1
s̃i1.
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D Extension to Two Types of Investors
The model can be easily extended to allow for any number of distinct types of investors, differing in their
levels of risk aversion and/or the precision of their interpretation of information. The only requirement is
that there exists an infinite number of investors of each type so that, by the law or large numbers, the average
interpretation by each type of investor is unbiased. I will only consider the case of two types of investors,
but the generalization to more types of investors is straightforward.

The two types of investors are indexed by j = {1, 2}; the fraction of type 1 investors is λ. Since different
types of investors interpret information with different degrees of precision, they will form different beliefs
when conditioning on their interpretation (F it ), even if they interpret information exactly in the same way.38

To obtain the optimal demand for an investor of each type, we use Lemmas 2 to 4 with the necessary
adaptations for each type of investors. Specifically, Kt in Lemma 2 becomes type dependent through Σy,t,
which reflects the different precision of interpretation across types of investors. In Lemma 3, ψt, Gt and Σ∆,t

also become type dependent. Finally, in Lemma 4 Qt and α become type dependent as well.
Denoting type specifics variables by superscripting them with (j), the market clearing condition becomes
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t
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with the equivalence following from substitution of equation (38). Substituting
´
i
E
(
s| F i(j)t

)
, j = {1, 2} for

equation (41) with type dependent matrices Γt and Γ̂t, the market clearing condition can be written as{
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All the entries of the vectors multiplying E (s| Fct ) and s and the scalar multiplying θt have to be simul-
taneously equal to zero ∀t for the market clearing condition to be satisfied at all dates. This gives us
(T − 1)× (2n+ 1) nonlinear equations from which the same number of price function coefficients can be de-
termined. Note that, although the system is underidentified for vectors Q(j)

t , j = {1, 2} , t = {1, 2, ..., T − 1},
it is exactly identified for the price function coefficients. Vectors Q(j)

t can be determined once we obtain the
price function coefficients.

38In contrast, investors of the same type form different expectations only if they interpret information differently.
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